991 resultados para Metric Space


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algorithm to generate a minimal spanning tree is presented when the nodes with their coordinates in some m-dimensional Euclidean space and the corresponding metric are given. This algorithm is tested on manually generated data sets. The worst case time complexity of this algorithm is O(n log2n) for a collection of n data samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let where be a set of points in d-dimensional space with a given metric rho. For a point let r (p) be the distance of p with respect to rho from its nearest neighbor in Let B(p,r (p) ) be the open ball with respect to rho centered at p and having the radius r (p) . We define the sphere-of-influence graph (SIG) of as the intersection graph of the family of sets Given a graph G, a set of points in d-dimensional space with the metric rho is called a d-dimensional SIG-representation of G, if G is isomorphic to the SIG of It is known that the absence of isolated vertices is a necessary and sufficient condition for a graph to have a SIG-representation under the L (a)-metric in some space of finite dimension. The SIG-dimension under the L (a)-metric of a graph G without isolated vertices is defined to be the minimum positive integer d such that G has a d-dimensional SIG-representation under the L (a)-metric. It is denoted by SIG (a)(G). We study the SIG-dimension of trees under the L (a)-metric and almost completely answer an open problem posed by Michael and Quint (Discrete Appl Math 127:447-460, 2003). Let T be a tree with at least two vertices. For each let leaf-degree(v) denote the number of neighbors of v that are leaves. We define the maximum leaf-degree as leaf-degree(x). Let leaf-degree{(v) = alpha}. If |S| = 1, we define beta(T) = alpha(T) - 1. Otherwise define beta(T) = alpha(T). We show that for a tree where beta = beta (T), provided beta is not of the form 2 (k) - 1, for some positive integer k a parts per thousand yen 1. If beta = 2 (k) - 1, then We show that both values are possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Space shift keying (SSK) is a special case of spatial modulation (SM), which is a relatively new modulation technique that is getting recognized to be attractive in multi-antenna communications. Our new contribution in this paper is an analytical derivation of exact closed-form expression for the end-to-end bit error rate (BER) performance of SSK in decode-and-forward (1)1,) cooperative relaying. An incremental relaying (IR) scheme with selection combining (SC) at the destination is considered. In SSK, since the information is carried by the transmit antenna index, traditional selection combining methods based on instantaneous SNRs can not be directly used. To overcome this problem, we propose to do selection between direct and relayed paths based on the Euclidean distance between columns of the channel matrix. With this selection metric, an exact analytical expression for the end-to-end BER is derived in closed-form. Analytical results are shown to match with simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stabilization of dynamic switched control systems is focused on and based on an operator-based formulation. It is assumed that the controlled object and the controller are described by sequences of closed operator pairs (L, C) on a Hilbert space H of the input and output spaces and it is related to the existence of the inverse of the resulting input-output operator being admissible and bounded. The technical mechanism addressed to get the results is the appropriate use of the fact that closed operators being sufficiently close to bounded operators, in terms of the gap metric, are also bounded. That philosophy is followed for the operators describing the input-output relations in switched feedback control systems so as to guarantee the closed-loop stabilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a new metric and mean on the set of positive semidefinite matrices of fixed-rank. The proposed metric is derived from a well-chosen Riemannian quotient geometry that generalizes the reductive geometry of the positive cone and the associated natural metric. The resulting Riemannian space has strong geometrical properties: it is geodesically complete, and the metric is invariant with respect to all transformations that preserve angles (orthogonal transformations, scalings, and pseudoinversion). A meaningful approximation of the associated Riemannian distance is proposed, that can be efficiently numerically computed via a simple algorithm based on SVD. The induced mean preserves the rank, possesses the most desirable characteristics of a geometric mean, and is easy to compute. © 2009 Society for Industrial and Applied Mathematics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Similarity measurements between 3D objects and 2D images are useful for the tasks of object recognition and classification. We distinguish between two types of similarity metrics: metrics computed in image-space (image metrics) and metrics computed in transformation-space (transformation metrics). Existing methods typically use image and the nearest view of the object. Example for such a measure is the Euclidean distance between feature points in the image and corresponding points in the nearest view. (Computing this measure is equivalent to solving the exterior orientation calibration problem.) In this paper we introduce a different type of metrics: transformation metrics. These metrics penalize for the deformatoins applied to the object to produce the observed image. We present a transformation metric that optimally penalizes for "affine deformations" under weak-perspective. A closed-form solution, together with the nearest view according to this metric, are derived. The metric is shown to be equivalent to the Euclidean image metric, in the sense that they bound each other from both above and below. For Euclidean image metric we offier a sub-optimal closed-form solution and an iterative scheme to compute the exact solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trajectory Mapping "TM'' is a new scaling technique designed to recover the parameterizations, axes, and paths used to traverse a feature space. Unlike Multidimensional Scaling (MDS), there is no assumption that the space is homogenous or metric. Although some metric ordering information is obtained with TM, the main output is the feature parameterizations that partition the given domain of object samples into different categories. Following an introductory example, the technique is further illustrated using first a set of colors and then a collection of textures taken from Brodatz (1966).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a generalisation of the k-nearest neighbour (k-NN) retrieval method based on an error function using distance metrics in the solution and problem space. It is an interpolative method which is proposed to be effective for sparse case bases. The method applies equally to nominal, continuous and mixed domains, and does not depend upon an embedding n-dimensional space. In continuous Euclidean problem domains, the method is shown to be a generalisation of the Shepard's Interpolation method. We term the retrieval algorithm the Generalised Shepard Nearest Neighbour (GSNN) method. A novel aspect of GSNN is that it provides a general method for interpolation over nominal solution domains. The performance of the retrieval method is examined with reference to the Iris classification problem,and to a simulated sparse nominal value test problem. The introducion of a solution-space metric is shown to out-perform conventional nearest neighbours methods on sparse case bases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a case base reduction technique which uses a metric defined on the solution space. The technique utilises the Generalised Shepard Nearest Neighbour (GSNN) algorithm to estimate nominal or real valued solutions in case bases with solution space metrics. An overview of GSNN and a generalised reduction technique, which subsumes some existing decremental methods, such as the Shrink algorithm, are presented. The reduction technique is given for case bases in terms of a measure of the importance of each case to the predictive power of the case base. A trial test is performed on two case bases of different kinds, with several metrics proposed in the solution space. The tests show that GSNN can out-perform standard nearest neighbour methods on this set. Further test results show that a caseremoval order proposed based on a GSNN error function can produce a sparse case base with good predictive power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel metric comparison of the appendicular skeleton (fore and hind limb) of different vertebrates using the Compositional Data Analysis (CDA) methodological approach it’s presented. 355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda, Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) were analyzed with CDA. A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinson distance has been used as a measure of disparity in limb elements proportions to infer some aspects of functional morphology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chess endgame tables should provide efficiently the value and depth of any required position during play. The indexing of an endgame’s positions is crucial to meeting this objective. This paper updates Heinz’ previous review of approaches to indexing and describes the latest approach by the first and third authors. Heinz’ and Nalimov’s endgame tables (EGTs) encompass the en passant rule and have the most compact index schemes to date. Nalimov’s EGTs, to the Distance-to-Mate (DTM) metric, require only 30.6 × 10^9 elements in total for all the 3-to-5-man endgames and are individually more compact than previous tables. His new index scheme has proved itself while generating the tables and in the 1999 World Computer Chess Championship where many of the top programs used the new suite of EGTs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chess endgame tables should provide efficiently the value and depth of any required position during play. The indexing of an endgame’s positions is crucial to meeting this objective. This paper updates Heinz’ previous review of approaches to indexing and describes the latest approach by the first and third authors. Heinz’ and Nalimov’s endgame tables (EGTs) encompass the en passant rule and have the most compact index schemes to date. Nalimov’s EGTs, to the Distance-to-Mate (DTM) metric, require only 30.6 × 109 elements in total for all the 3-to-5-man endgames and are individually more compact than previous tables. His new index scheme has proved itself while generating the tables and in the 1999 World Computer Chess Championship where many of the top programs used the new suite of EGTs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Fredholm properties of Toeplitz operators on the Bergman space A2 have been well-known for continuous symbols since the 1970s. We investigate the case p=1 with continuous symbols under a mild additional condition, namely that of the logarithmic vanishing mean oscillation in the Bergman metric. Most differences are related to boundedness properties of Toeplitz operators acting on Ap that arise when we no longer have 1

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study horo-tight immersions of manifolds into hyperbolic spaces. The main result gives several characterizations of horo-tightness of spheres, answering a question proposed by Cecil and Ryan. For instance, we prove that a sphere is horo-tight if and only if it is tight in the hyperbolic sense. For codimension bigger than one, it follows that horo-tight spheres in hyperbolic space are metric spheres. We also prove that horo-tight hyperspheres are characterized by the property that both of its total absolute horospherical curvatures attend their minimum value. We also introduce the notion of weak horo-tightness: an immersion is weak horo-tight if only one of its total absolute curvature attends its minimum. We prove a characterization theorem for weak horo-tight hyperspheres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we prove that if a Banach space X contains some uniformly convex subspace in certain geometric position, then the C(K, X) spaces of all X-valued continuous functions defined on the compact metric spaces K have exactly the same isomorphism classes that the C(K) spaces. This provides a vector-valued extension of classical results of Bessaga and Pelczynski (1960) [2] and Milutin (1966) [13] on the isomorphic classification of the separable C(K) spaces. As a consequence, we show that if 1 < p < q < infinity then for every infinite countable compact metric spaces K(1), K(2), K(3) and K(4) are equivalent: (a) C(K(1), l(p)) circle plus C(K(2), l(q)) is isomorphic to C(K(3), l(p)) circle plus (K(4), l(q)). (b) C(K(1)) is isomorphic to C(K(3)) and C(K(2)) is isomorphic to C(K(4)). (C) 2011 Elsevier Inc. All rights reserved.