928 resultados para Metal-organic chemical vapor deposition (MOCVD)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hot-filament metal oxide deposition (HFMOD) is a variant of conventional hot-filament chemical vapor deposition (HFCVD) recently developed in our laboratory and successfully used to obtain high-quality, uniform films of MOx WOx and VOx. The method employs the controlled oxidation of a filament of a transition metal heated to 1000 degrees C or more in a rarefied oxygen atmosphere (typically, of about 1 Pa). Metal oxide vapor formed on the surface of the filament is transported a few centimetres to deposit on a suitable substrate. Key system parameters include the choice of filament material and diameter, the applied current and the partial pressures of oxygen in the chamber. Relatively high film deposition rates, such as 31 nm min(-1) for MoOx, are obtained. The film stoichiometry depends on the exact deposition conditions. MoOx films, for example, present a mixture of MoO2 and MoO3 phases, as revealed by XPS. As determined by Li+ intercalation using an electrochemical cell, these films also show a colouration efficiency of 19.5 cm(2) C-1 at a wavelength of 700 nm. MOx and WOx films are promising in applications involving electrochromism and characteristics of their colouring/bleaching cycles are presented. The chemical composition and structure of VOx films examined using IRRAS (infrared reflection-absorption spectroscopy), RBS (Rutherford backscattering spectrometry) and XPS (X-ray photoelectron spectrometry) are also presented. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the final goal of integrating III-V materials on silicon substrates for tandem solar cells, the influence of the Metal-Organic Vapor Phase Epitaxy (MOVPE) environment on the minority carrier properties of silicon wafers has been evaluated. These properties will essentially determine the photovoltaic performance of the bottom cell in a III-V-on-Si tandem solar cell. A comparison of the base minority carrier lifetimes obtained for different thermal processes carried out in a MOVPE reactor on Czochralski silicon wafers has been carried out. An important degradation of minority carrier lifetime during the surface preparation (i.e. H2 anneal) has been observed. Three different mechanisms have been proposed for explaining this behavior: 1) the introduction of extrinsic impurities coming from the reactor; 2) the activation of intrinsic lifetime killing impurities coming from the wafer itself; and finally, 3) the formation of crystal defects, which eventually become recombination centers. The effect of the emitter formation by phosphorus diffusion has also been evaluated. In this sense, it has been reported that lifetime can be recovered during the emitter formation either by the effect of the P on extracting impurities, or by the role of the atomic hydrogen on passivating the defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal oxide-semiconductor capacitors with TiO(x) deposited with different O(2) partial pressures (30%, 35%, and 40%) and annealed at 550, 750, and 1000 degrees C were fabricated and characterized. Fourier transform infrared, x-ray near edge spectroscopy, and elipsometry measurements were performed to characterize the TiO(x) films. TiO(x)N(y) films were also obtained by adding nitrogen to the gaseous mixture and physical results were presented. Capacitance-voltage (1 MHz) and current-voltage measurements were utilized to obtain the effective dielectric constant, effective oxide thickness, leakage current density, and interface quality. The results show that the obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density (for V(G)=-1 V, for some structures as low as 1 nA/cm(2), acceptable for complementary metal oxide semiconductor circuits fabrication), indicating that this material is a viable, in terms of leakage current density, highk substitute for current ultrathin dielectric layers. (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3043537]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal oxide semiconductor (MOS) capacitors with titanium oxide (TiO(x)) dielectric layer, deposited with different oxygen partial pressure (30,35 and 40%) and annealed at 550, 750 and 1000 degrees C, were fabricated and characterized. Capacitance-voltage and current-voltage measurements were utilized to obtain, the effective dielectric constant, effective oxide thickness, leakage current density and interface quality. The obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density, for a gate voltage of - 1 V, as low as 1 nA/cm(2) for some of the structures, acceptable for MOS fabrication, indicating that this material is a viable high dielectric constant substitute for current ultra thin dielectric layers. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we produce and study the flexible organic–inorganic hybrid moisture barrier layers for the protection of air sensitive organic opto-electronic devices. The inorganic amorphous silicon nitride layer (SiNx:H) and the organic PMMA [poly (methyl methacrylate)] layer are deposited alternatingly by using hot wire chemical vapor deposition (HW-CVD) and spin-coating techniques, respectively. The effect of organic–inorganic hybrid interfaces is analyzed for increasing number of interfaces. We produce highly transparent (∼80% in the visible region) hybrid structures. The morphological properties are analysed providing a good basis for understanding the variation of the water vapor transmission rate (WVTR) values. A minimum WVTR of 4.5 × 10−5g/m2day is reported at the ambient atmospheric conditions for 7 organic/inorganic interfaces. The hybrid barriers show superb mechanical flexibility which confirms their high potential for flexible applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fines de la década del '60 un grupo de investigadores rusos pudo obtener diamante a partir de experimentos con reacciones en fase vapor a bajas presiones de los gases envueltos en el proceso. En 1976 Derjagin et al. mostraron que la nucleación de diamante es posible sobre sustratos de Cu y en 1982 Matsumoto demuestra que la nucleación y crecimiento continuo a bajas presiones de diamante es posible sobre diversos substratos. Las especiales propiedades del diamante (D): dureza, elevado punto de fusión, inercia química, así como elevada conductividad del calor, sonido y de señales ópticas, ubican a este material como una de las prioridades de desarrollo e investigación de grupos de excelencia en el mundo entero. (...) Objetivos Generales y Específicos: El objetivo de este proyecto se basa en la construcción de un reactor para CVD (Chemical Vapour Deposition) y de los elementos auxiliares necesarios para producir diamante sintético por este método. Determinando los parámetros que controlan el proceso: mezcla de gases adecuada, temperatura de substrato, temperatura del plasma, presión parcial de los gases, vacío necesario y otros. En la primera etapa de 2 años se priorizará la puesta a punto del método, para luego pasar al estudio de las diferentes aplicaciones tecnológicas necesarias para la región. Específicamente, en el tercer año se tratará de generar diamantes como recubrimientos para herramientas de corte, así como para trapanos de velocidad, aprovechando residuos para la industria de abrasivos. Los objetivos generales no se cirscuncriben sólo al hecho de montar un reactor en laboratorio para CVD, sino una vez encontrados los parámetros que gobiernan esta técnica, producir diamante sintético para aplicaciones en la industria de herramientas de corte, micrófonos y óptica. Otro objetivo general de importancia es la formación de recursos humanos en técnicas de vacío, ingeniería de superficie y tecnología de plasma a través del personal y de los estudiantes involucrados en el proyecto, así como los participantes en cátedras del Departamento de Mecánica. En cuanto a los objetivos específicos para los dos primeros años, es preparar, construir y poner a punto un reactor de laboratorio de filamento caliente (Hot filament) por tecnología de plasma tipo CVD para obtener diamante sintético a partir de gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lasers play an important role for medical, sensoric and data storage devices. This thesis is focused on design, technology development, fabrication and characterization of hybrid ultraviolet Vertical-Cavity Surface-Emitting Lasers (UV VCSEL) with organic laser-active material and inorganic distributed Bragg reflectors (DBR). Multilayer structures with different layer thicknesses, refractive indices and absorption coefficients of the inorganic materials were studied using theoretical model calculations. During the simulations the structure parameters such as materials and thicknesses have been varied. This procedure was repeated several times during the design optimization process including also the feedback from technology and characterization. Two types of VCSEL devices were investigated. The first is an index coupled structure consisting of bottom and top DBR dielectric mirrors. In the space in between them is the cavity, which includes active region and defines the spectral gain profile. In this configuration the maximum electrical field is concentrated in the cavity and can destroy the chemical structure of the active material. The second type of laser is a so called complex coupled VCSEL. In this structure the active material is placed not only in the cavity but also in parts of the DBR structure. The simulations show that such a distribution of the active material reduces the required pumping power for reaching lasing threshold. High efficiency is achieved by substituting the dielectric material with high refractive index for the periods closer to the cavity. The inorganic materials for the DBR mirrors have been deposited by Plasma- Enhanced Chemical Vapor Deposition (PECVD) and Dual Ion Beam Sputtering (DIBS) machines. Extended optimizations of the technological processes have been performed. All the processes are carried out in a clean room Class 1 and Class 10000. The optical properties and the thicknesses of the layers are measured in-situ by spectroscopic ellipsometry and spectroscopic reflectometry. The surface roughness is analyzed by atomic force microscopy (AFM) and images of the devices are taken with scanning electron microscope (SEM). The silicon dioxide (SiO2) and silicon nitride (Si3N4) layers deposited by the PECVD machine show defects of the material structure and have higher absorption in the ultra violet range compared to ion beam deposition (IBD). This results in low reflectivity of the DBR mirrors and also reduces the optical properties of the VCSEL devices. However PECVD has the advantage that the stress in the layers can be tuned and compensated, in contrast to IBD at the moment. A sputtering machine Ionsys 1000 produced by Roth&Rau company, is used for the deposition of silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3) and zirconium dioxide (ZrO2). The chamber is equipped with main (sputter) and assisted ion sources. The dielectric materials were optimized by introducing additional oxygen and nitrogen into the chamber. DBR mirrors with different material combinations were deposited. The measured optical properties of the fabricated multilayer structures show an excellent agreement with the results of theoretical model calculations. The layers deposited by puttering show high compressive stress. As an active region a novel organic material with spiro-linked molecules is used. Two different materials have been evaporated by utilizing a dye evaporation machine in the clean room of the department Makromolekulare Chemie und Molekulare Materialien (mmCmm). The Spiro-Octopus-1 organic material has a maximum emission at the wavelength λemission = 395 nm and the Spiro-Pphenal has a maximum emission at the wavelength λemission = 418 nm. Both of them have high refractive index and can be combined with low refractive index materials like silicon dioxide (SiO2). The sputtering method shows excellent optical quality of the deposited materials and high reflection of the multilayer structures. The bottom DBR mirrors for all VCSEL devices were deposited by the DIBS machine, whereas the top DBR mirror deposited either by PECVD or by combination of PECVD and DIBS. The fabricated VCSEL structures were optically pumped by nitrogen laser at wavelength λpumping = 337 nm. The emission was measured by spectrometer. A radiation of the VCSEL structure at wavelength 392 nm and 420 nm is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scaling down of the CMOS technology requires thinner gate dielectric to maintain high performance. However, due to the depletion of poly-Si gate, it is difficult to reduce the gate thickness further especially for sub-65 nm CMOS generation. Fully silicidation metal gate (FUSI) is one of the most promising solutions. Furthermore, FUSI metal gate reduces gate-line sheet resistance, prevents boron penetration to channels, and has good process compatibility with high-k gate dielectric. Poly-SiGe gate technology is another solution because of its enhancement of boron activation and compatibility with the conventional CMOS process. Combination of these two technologies for the formation of fully germanosilicided metal gate makes the approach very attractive. In this paper, the deposition of undoped Poly-Si₁₋xGex (0 < x < 30% ) films onto SiO₂ in a low pressure chemical vapor deposition (LPCVD) system is described. Detailed growth conditions and the characterization of the grown films are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A metal organic framework of Cu-II, tartarate (tar) and 2,2'-bipyridyl (2,2'-bipy)], {[Cu(tar)(2,2'-bipy)]center dot 5H(2)O}(n)} (1) has been synthesized at the mild ambient condition and characterized by single crystal X-ray crystallography. In the compound, the Cu(2,2'-bipy) entities are bridged by tartarate ions which are coordinated to Cu-II by both hydroxyl and monodentate carboxylate oxygen to form a one-dimensional chain. The non-coordinated water molecules form ID water chains by edge-sharing cyclic water pentamers along with dangling water dimers. It shows reversible water expulsion upon heating. The water chains join the ID coordination polymeric chains to a 31) network through hydrogen-bond interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Capacitance spectra of thin (< 200 nm) Alq(3) electron-only devices have been measured as a function of bias voltage. Capacitance spectra exhibit a flat response at high frequencies (> 10(3) Hz) and no feature related to the carrier transit time is observed. Toward low frequencies the spectra reach a maximum and develop a negative excess capacitance. Capacitance response along with current-voltage (J-V) characteristics are interpreted in terms of the injection of electrons mediated by surface states at the metal organic interface. A detailed model for the impedance of the injection process is provided that highlights the role of the filling/releasing kinetics of energetically distributed interface states. This approach connects the whole capacitance spectra to the occupancy of interface states, with no additional information about bulk trap levels. Simulations based on the model allow to derive the density of interface states effectively intervening in the carrier injection (similar to 1.5 x 10(12) cm (2)). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lead zirconate titanate (PZT) solutions were prepared using a polymeric precursor method, Zr n-propoxide and Ti i-propoxide were used as starting materials with ethylene glycol and water as solvents. The PZT solution was spin-coated on Pt/Ti/SiO2/Si substrates, baked on a hot plate, and finally heat-treated in a tube furnace between 400 and 800°C. The surface morphology and grain size of the films were characterized by atomic force microscopy (AFM), using a tapping mode with amplitude modulation. The films, thermal annealed at temperatures higher than 500°C, exhibited a dense microstructure, without noticeable cracks or voids. Electrical properties were investigated as a function of composition and annealing temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LaNiO3 thin films were deposited on SrLaAlO4 (1 0 0) and SrLaAlO4 (0 0 1) single crystal substrates by a chemical solution deposition method and heat-treated in oxygen atmosphere at 700° C in tube oven. Structural, morphological, and electrical properties of the LaNiO 3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and electrical resistivity as temperature function (Hall measurements). The X-ray diffraction data indicated good crystallinity and a structural preferential orientation. The LaNiO3 thin films have a very flat surface and no droplet was found on their surfaces. Samples of LaNiO3 grown onto (1 0 0) and (0 0 1) oriented SrLaAlO4 single crystal substrates reveled average grain size by AFM approximately 15-30 nm and 20-35 nm, respectively. Transport characteristics observed were clearly dependent upon the substrate orientation which exhibited a metal-to-insulator transition. The underlying mechanism is a result of competition between the mobility edge and the Fermi energy through the occupation of electron states which in turn is controlled by the disorder level induced by different growth surfaces. © 2013 Elsevier Ltd and Techna Group S.r.l.