993 resultados para Mechanical Calculations
Resumo:
Structural and electronic properties of the bulk and relaxed surfaces (TiO2 and PbO terminated) of cubic PbTiO3 are investigated by means of periodic quantum-mechanical calculations based on density functional theory. It is observed that the difference in surface energies is small and relaxations effects are most prominent for Ti and Ph surface atoms. The electronic structure shows a splitting of the lowest conduction bands for the TiO2 terminated surface and of the highest valence bands for the PbO terminated slab. The calculated indirect band gap is: 3.18, 2.99 and 3.03 eV for bulk, TiO2 and PbO terminations, respectively. The electron density maps show that the Ti-O bond has a partial covalent character, whereas the Pb-O bonds present a very low covalency. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Crystalline BaWO4 (BWO) powder obtained by the polymeric precursor method was structurally disordered by means of high-energy mechanical milling. For the first time a strong and broad photoluminescence (PL) has been measured at room temperature for mechanically milled BWO powder and interpreted by ground-state quantum mechanical calculations in the density functional theory framework. Two periodic models have been studied; one representing the crystalline form and the other one representing the disordered BWO powder. These models allowed the calculation of electronic properties, which are consistent with the experimental results, showing that structural disorder in the lattice is an important condition to generate an intense and broad PL band. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
An intense and broad visible photoluminescence (PL) band was observed at room temperature in structurally disordered PbWO4 thin films. The scheelite lead tungstate (PbWO4) films prepared by the polymeric precursor method and annealed at different temperatures were structurally characterized by means of x-ray diffraction and atomic force microscopy analysis. Quantum-mechanical calculations showed that the local disorder of the network modifier (Pb) has a very important role in the charge transfer involved in the green PL emission. The experimental and theoretical results are in good agreement, both indicating that the generation of the intense visible PL band is related to simultaneous structural order and disorder in the scheelite PbWO4 lattice.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ultrafine ordered and disordered SrZrO3 powders were prepared by the polymeric precursor method. The structural evolution from structural disorder to order was monitored by X-ray diffraction and X-ray absorption near-edge spectroscopy. Complex cluster vacancies [ZrO5 center dot V-O(Z)] and [SrOII center dot V-O(Z)] (where V-O(Z) = V-O(X), V-O(center dot) and V-O(center dot center dot)) were proposed for disordered powders. The intense violet-blue light photoluminescence emission measured at room temperature in the disordered powders was attributed to complex cluster vacancies. High-level quantum mechanical calculations within the density functional theory framework were used to interpret the experimental results. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Intense and broad photoluminescence (PL) emission at room temperature was observed on structurally disordered Ba[Zr0.25Ti0.75]O-3 (BZT) powders synthesized by the polymeric precursor method. BZT powders were annealed at 573 K for different times and at 973 K for 2 h in oxygen atmosphere. The single-phase cubic perovskite structure of the powder annealed at 973 K for 2 It was identified by X-ray diffraction and Fourier transform Raman techniques. PL emission increased with the increase of annealing time, which reached its maximum value in the powder annealed at 573 K for 192 h. First principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered models. The theoretical calculations and experimental measurements of Ultraviolet-visible absorption spectroscopy indicate that the presence of intermediary energy levels in the band gap is favorable for the intense and broad PL emission at room temperature in disordered BZT powders. The PL behavior is probably due the existence of a charge gradient on the disordered structure, denoted by means of a charge transfer process from [TiO5]-[ZrO6] or [TiO6]-[ZrO5] clusters to [TiO6]-[ZrO6] clusters. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Complex cluster [TiO5 center dot V-O(z)] and [SrO11 center dot V-O(z)] (where V-O(z)=V-O(X), V-O(center dot), V-O(center dot center dot)) vacancies were identified in disordered SrTiO3 powders prepared by the polymeric precursor method, based on experimental measurements by x-ray absorption near edge structure spectroscopy. The paramagnetic complex states of [TiO5 center dot V-O(center dot)] and [SrO11 center dot V-O(center dot)] with unpaired electrons were confirmed by electron paramagnetic resonance spectroscopy. The disordered powders showed strong photoluminescence at room temperature. Structural defects of disordered powders, in terms of band diagram, density of states, and electronic charges, were interpreted using high-level quantum mechanical calculations in the density functional framework. The four periodic models used here were consistent with the experimental data and explained the presence of photoluminescence. (C) 2008 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, a combined theoretical and experimental study on the electronic structure and photoluminescence (PL) properties of beta zinc molybdate (β-ZnMoO4) microcrystals synthesized by the hydrothermal method has been employed. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectroscopies. Their optical properties were investigated by ultraviolet-visible (UV-Vis) absorption spectroscopy and PL measurements. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level have been carried out. XRD patterns, Rietveld refinement, FT-Raman and FT-IR spectra showed that these crystals have a wolframite-type monoclinic structure. The Raman and IR frequencies experimental results are in reasonable agreement with theoretically calculated results. UV-Vis absorption measurements shows an optical band gap value of 3.17 eV, while the calculated band structure has a value of 3.22 eV. The density of states indicate that the main orbitals involved in the electronic structure of β-ZnMoO4 crystals are (O 2p-valence band and Mo 4d-conduction band). Finally, PL properties of β-ZnMoO4 crystals are explained by means of distortions effects in octahedral [ZnO6] and [MoO6] clusters and inhomogeneous electronic distribution into the lattice with the electron density map. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Ba(Zr0.75Ti0.25)O3 (BZT-75/25) powders were synthesized by the polymeric precursor method. Samples were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques. Their electronic structures were evaluated by first-principle quantum mechanical calculations based on density functional theory at the B3LYP level. Their optical properties were investigated by ultraviolet-visible (UV-Vis) spectroscopy and photoluminescence (PL) measurements at room temperature. XRD patterns and Rietveld refinement data indicate that the samples have a cubic structure. XANES spectra confirm the presence of pyramidal [TiO5] clusters and octahedral [TiO6] clusters in the disordered BZT-75/25 powders. EXAFS spectra indicate distortion of Ti-O and Ti-O-Ti bonds the first and second coordination shells, respectively. UV-Vis absorption spectra confirm the presence of different optical bandgap values and the band structure indicates an indirect bandgap for this material. The density of states demonstrates that intermediate energy levels occur between the valence band (VB) and the conduction band (CB). These electronic levels are due to the predominance of 4d orbitals of Zr atoms in relation to 3d orbitals of Ti atoms in the CB, while the VB is dominated by 2p orbitals related to O atoms. There was good correlation between the experimental and theoretical optical bandgap values. When excited at 482 nm at room temperature, BZT-75/25 powder treated at 500 C for 2 h exhibited broad and intense PL emission with a maximum at 578 nm in the yellow region. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Chalcones have shown potential to several pharmacological applications including antimalarial properties. We employed multivariate data analysis to correlate the antimalarial activity with electronic structure descriptors obtained through quantum mechanical calculations. The results show high statistical significance and bring valuable insights in order to design new compounds. © 2013 Springer Science+Business Media New York.
Resumo:
Synopsis: Objectives: In this research, an experimental and theoretical study was conducted to design a photodegradation mechanism of the amino acid tryptophan (Trp) in hair fibres. Methods: For the experimental research, Caucasian hair fibres were exposed to several different solar radiation simulation periods. Then, Trp and its photoproducts (N-formylkynurenine and kynurenine) were assayed by excitation and emission spectroscopic analysis. Results: For the theoretical study, reactions involved in the photodegradation of Trp were evaluated by high-level quantum mechanical calculations in a density functional theory (DFT) framework which indicate a probable Trp degradation mechanism with a minimum expended energy pathway. Conclusion: The biochemistry concerning these reactions is essentially important for a biological system where the degradation of Trp occurs. © 2013 John Wiley & Sons Ltd.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)