924 resultados para Mean Absolute Scaled Error (MASE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluated statistical equations estimates (based on radiometric fractions) of the hourly diffuse radiation incident on inclined surfaces for the North to 12.85, 22.85 and 32.85°, the climate and geographical conditions of Botucatu, SP. The database was generated from April/1998 to December/2007, with measures in the three tilted surfaces in different periods, but concomitant to the horizontal plane. In the validation of the equations were used indicative statistics MBE (mean absolute error), RMSE (square root mean square error) and index adjustment (d) for three inclinations and conditions of sky coverage. The increased angle of inclination of the surface led to increased scattering of hourly values for the coefficient of atmospheric transmissivity of diffuse radiation for inclined and horizontal surfaces. Estimates of diffuse radiation on the basis of hourly tilted horizontal global radiation occur for quadratic polynomial models, which adjust K'Dβ maximum values of between 0.14 and 0.30 for winter and summer when KTH varies between 0.40 and 0.66, indicating that energy, the highest values of diffuse radiation occur in partly cloudy sky conditions and / or partially open. The increase in atmospheric transmissivity decreases the performance of annual and monthly equations at all inclinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents experimental results for flow boiling heat transfer coefficient and critical heat flux (CHF) in small flattened tubes. The tested flattened tubes have the same equivalent internal diameter of 2.2 mm, but different aspect height/width ratios (H/W) of 1/4, 1/2, 2 and 4. The experimental data were compared against results for circular tubes using R134a and R245fa as working fluids at a nominal saturation temperature of 31 degrees C. For mass velocities higher than 200 kg/m(2)s, the flattened and circular tubes presented similar heat transfer coefficients. Such a behavior is related to the fact that stratification effects are negligible under conditions of higher mass velocities. Heat transfer correlations from the literature, usually developed using only circular-channel experimental data, predicted the flattened tube results for mass velocities higher than 200 kg/m(2)s with mean absolute error lower than 20% using the equivalent diameter to account for the geometry effect. Similarly, the critical heat flux results were found to be independent of the tube aspect ratio when the same equivalent length was kept. Equivalent length is a new parameter which takes into account the channel heat transfer area. The CHF correlations for round tubes predicted the flattened tube data relatively well when using the equivalent diameter and length. Furthermore, a new proposed CHF correlation predicted the present flattened tube data with a mean absolute error of 5%. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microparticles of ketoprofen entrapped in blends of acrylic resins (Eudragit RL 30D and RS 30D) were successfully produced by spray drying. The effects of the proportion ketoprofen : polymer (1: 1 and 1: 3) and of spray-drying parameters (drying gas inlet temperatures of 80 and 100 degrees C; microencapsulating composition feed flow rates of 4 and 6 g/min) on the microparticles properties (drug content, encapsulation efficiency, mean particle size, moisture content, and dissolution behavior) were evaluated. Differential scanning calorimetry (DSC) thermograms and X-ray diffractograms of the spray-dried product, the free drug, and the physical mixture between the free drug and spray-dried composition (blank) were carried out. Microparticles obtained at inlet temperature of 80 degrees C, feed flow rate of 4 g/min, and ketoprofen : acrylic resin ratio of 1: 3 presented an encapsulation efficiency of 88.1%, moisture content of 5.8%, production yield around 50%, and a higher reduction in dissolution rate of the entrapped ketoprofen. Sigmoidal shape dissolution profiles were presented by the spray-dried microparticles. The dissolution profiles were relatively well described by the Weibull model, a showing high coefficient of determination, R-2, and a mean absolute error between experimental and estimated values of between 4.6 and 10.1%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled-Cluster-Theorie (CC) ist in der heutigen Quantenchemie eine der erfolgreichsten Methoden zur genauen Beschreibung von Molekülen. Die in dieser Arbeit vorgestellten Ergebnisse zeigen, daß neben den Berechnungen von Energien eine Reihe von Eigenschaften wie Strukturparameter, Schwingungsfrequenzen und Rotations-Schwingungs-Parameter kleiner und mittelgrofler Moleküle zuverlässig und präzise vorhergesagt werden können. Im ersten Teil der Arbeit wird mit dem Spin-adaptierten Coupled-Cluster-Ansatz (SA-CC) ein neuer Weg zur Verbesserung der Beschreibung von offenschaligen Systemen vorgestellt. Dabei werden zur Bestimmung der unbekannten Wellenfunktionsparameter zusätzlich die CC-Spingleichungen gelöst. Durch dieses Vorgehen wird gewährleistet, daß die erhaltene Wellenfunktion eine Spineigenfunktion ist. Die durchgeführte Implementierung des Spin-adaptierten CC-Ansatzes unter Berücksichtigung von Einfach- und Zweifachanregungen (CCSD) für high-spin Triplett-Systeme wird ausführlich erläutert. Im zweiten Teil werden CC-Additionsschemata vorgestellt, die auf der Annahme der Additivität von Elektronenkorrelations- und Basissatzeffekten basieren. Die etablierte Vorgehensweise, verschiedene Beiträge zur Energie mit an den Rechenaufwand angepassten Basissätzen separat zu berechnen und aufzusummieren, wird hier auf Gradienten und Kraftkonstanten übertragen. Für eine Beschreibung von Bindungslängen und harmonischen Schwingungsfrequenzen mit experimenteller Genauigkeit ist die Berücksichtigung von Innerschalenkorrelationseffekten sowie Dreifach- und Vierfachanregungen im Clusteroperator der Wellenfunktion nötig. Die Basissatzkonvergenz wird dabei zusätzlich mit Extrapolationsmethoden beschleunigt. Die quantitative Vorhersage der Bindungslängen von 17 kleinen Molekülen, aufgebaut aus Atomen der ersten Langperiode, ist so mit einer Genauigkeit von wenigen Hundertstel Pikometern möglich. Für die Schwingungsfrequenzen dieser Moleküle weist das CC-Additionsschema basierend auf den berechneten Kraftkonstanten im Vergleich zu experimentellen Ergebnissen einen mittleren absoluten Fehler von 3.5 cm-1 und eine Standardabweichung von 2.2 cm-1 auf. Darüber hinaus werden zur Unterstützung von experimentellen Untersuchungen berechnete spektroskopische Daten einiger größerer Moleküle vorgelegt. Die in dieser Arbeit vorgestellten Untersuchungen zur Isomerisierung von Dihalogensulfanen XSSX (X= F, Cl) oder die Berechnung von Struktur- und Rotations-Schwingungs-Parametern für die Moleküle CHCl2F und CHClF2 zeigen, daß bereits störungstheoretische CCSD(T)-Näherungsmethoden qualitativ gute Vorhersagen experimenteller Resultate liefern. Desweiteren werden Diskrepanzen von experimentellen und berechneten Bindungsabständen bei den Molekülen Borhydrid- und Carbenylium durch die Berücksichtigung des elektronischen Beitrages zum Trägheitsmoment beseitigt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term measurements of CO2 flux can be obtained using the eddy covariance technique, but these datasets are affected by gaps which hinder the estimation of robust long-term means and annual ecosystem exchanges. We compare results obtained using three gap-fill techniques: multiple regression (MR), multiple imputation (MI), and artificial neural networks (ANNs), applied to a one-year dataset of hourly CO2 flux measurements collected in Lutjewad, over a flat agriculture area near the Wadden Sea dike in the north of the Netherlands. The dataset was separated in two subsets: a learning and a validation set. The performances of gap-filling techniques were analysed by calculating statistical criteria: coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), maximum absolute error (MaxAE), and mean square bias (MSB). The gap-fill accuracy is seasonally dependent, with better results in cold seasons. The highest accuracy is obtained using ANN technique which is also less sensitive to environmental/seasonal conditions. We argue that filling gaps directly on measured CO2 fluxes is more advantageous than the common method of filling gaps on calculated net ecosystem change, because ANN is an empirical method and smaller scatter is expected when gap filling is applied directly to measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several lake ice phenology studies from satellite data have been undertaken. However, the availability of long-term lake freeze-thaw-cycles, required to understand this proxy for climate variability and change, is scarce for European lakes. Long time series from space observations are limited to few satellite sensors. Data of the Advanced Very High Resolution Radiometer (AVHRR) are used in account of their unique potential as they offer each day global coverage from the early 1980s expectedly until 2022. An automatic two-step extraction was developed, which makes use of near-infrared reflectance values and thermal infrared derived lake surface water temperatures to extract lake ice phenology dates. In contrast to other studies utilizing thermal infrared, the thresholds are derived from the data itself, making it unnecessary to define arbitrary or lake specific thresholds. Two lakes in the Baltic region and a steppe lake on the Austrian–Hungarian border were selected. The later one was used to test the applicability of the approach to another climatic region for the time period 1990 to 2012. A comparison of the extracted event dates with in situ data provided good agreements of about 10 d mean absolute error. The two-step extraction was found to be applicable for European lakes in different climate regions and could fill existing data gaps in future applications. The extension of the time series to the full AVHRR record length (early 1980 until today) with adequate length for trend estimations would be of interest to assess climate variability and change. Furthermore, the two-step extraction itself is not sensor-specific and could be applied to other sensors with equivalent near- and thermal infrared spectral bands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM Depending on intensity, exercise may induce a strong hormonal and metabolic response, including acid-base imbalances and changes in microcirculation, potentially interfering with the accuracy of continuous glucose monitoring (CGM). The present study aimed at comparing the accuracy of the Dexcom G4 Platinum (DG4P) CGM during continuous moderate and intermittent high-intensity exercise (IHE) in adults with type 1 diabetes (T1DM). METHODS Ten male individuals with well-controlled T1DM (HbA1c 7.0±0.6% [54±6mmol/mol]) inserted the DG4P sensor 2 days prior to a 90min cycling session (50% VO2peak) either with (IHE) or without (CONT) a 10s all-out sprint every 10min. Venous blood samples for reference glucose measurement were drawn every 10min and euglycemia (target 7mmol/l) was maintained using an oral glucose solution. Additionally, lactate and venous blood gas variables were determined. RESULTS Mean reference blood glucose was 7.6±0.2mmol/l during IHE and 6.7±0.2mmol/l during CONT (p<0.001). IHE resulted in significantly higher levels of lactate (7.3±0.5mmol/l vs. 2.6±0.3mmol/l, p<0.001), while pH values were significantly lower in the IHE group (7.27 vs. 7.38, p=0.001). Mean absolute relative difference (MARD) was 13.3±2.2% for IHE and 13.6±2.8% for CONT suggesting comparable accuracy (p=0.90). Using Clarke Error Grid Analysis, 100% of CGM values during both IHE and CONT were in zones A and B (IHE: 77% and 23%; CONT: 78% and 22%). CONCLUSIONS The present study revealed good and comparable accuracy of the DG4P CGM system during intermittent high intensity and continuous moderate intensity exercise, despite marked differences in metabolic conditions. This corroborates the clinical robustness of CGM under differing exercise conditions. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02068638.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The euphotic depth (Zeu) is a key parameter in modelling primary production (PP) using satellite ocean colour. However, evaluations of satellite Zeu products are scarce. The objective of this paper is to investigate existing approaches and sensors to estimate Zeu from satellite and to evaluate how different Zeu products might affect the estimation of PP in the Southern Ocean (SO). Euphotic depth was derived from MODIS and SeaWiFS products of (i) surface chlorophyll-a (Zeu-Chla) and (ii) inherent optical properties (Zeu-IOP). They were compared with in situ measurements of Zeu from different regions of the SO. Both approaches and sensors are robust to retrieve Zeu, although the best results were obtained using the IOP approach and SeaWiFS data, with an average percentage of error (E) of 25.43% and mean absolute error (MAE) of 0.10 m (log scale). Nevertheless, differences in the spatial distribution of Zeu-Chla and Zeu-IOP for both sensors were found as large as 30% over specific regions. These differences were also observed in PP. On average, PP based on Zeu-Chla was 8% higher than PP based on Zeu-IOP, but it was up to 30% higher south of 60°S. Satellite phytoplankton absorption coefficients (aph) derived by the Quasi-Analytical Algorithm at different wavelengths were also validated and the results showed that MODIS aph are generally more robust than SeaWiFS. Thus, MODIS aph should be preferred in PP models based on aph in the SO. Further, we reinforce the importance of investigating the spatial differences between satellite products, which might not be detected by the validation with in situ measurements due to the insufficient amount and uneven distribution of the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secchi depth is a measure of water transparency. In the Baltic Sea region, Secchi depth maps are used to assess eutrophication and as input for habitat models. Due to their spatial and temporal coverage, satellite data would be the most suitable data source for such maps. But the Baltic Sea's optical properties are so different from the open ocean that globally calibrated standard models suffer from large errors. Regional predictive models that take the Baltic Sea's special optical properties into account are thus needed. This paper tests how accurately generalized linear models (GLMs) and generalized additive models (GAMs) with MODIS/Aqua and auxiliary data as inputs can predict Secchi depth at a regional scale. It uses cross-validation to test the prediction accuracy of hundreds of GAMs and GLMs with up to 5 input variables. A GAM with 3 input variables (chlorophyll a, remote sensing reflectance at 678 nm, and long-term mean salinity) made the most accurate predictions. Tested against field observations not used for model selection and calibration, the best model's mean absolute error (MAE) for daily predictions was 1.07 m (22%), more than 50% lower than for other publicly available Baltic Sea Secchi depth maps. The MAE for predicting monthly averages was 0.86 m (15%). Thus, the proposed model selection process was able to find a regional model with good prediction accuracy. It could be useful to find predictive models for environmental variables other than Secchi depth, using data from other satellite sensors, and for other regions where non-standard remote sensing models are needed for prediction and mapping. Annual and monthly mean Secchi depth maps for 2003-2012 come with this paper as Supplementary materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Air pollution is a big threat and a phenomenon that has a specific impact on human health, in addition, changes that occur in the chemical composition of the atmosphere can change the weather and cause acid rain or ozone destruction. Those are phenomena of global importance. The World Health Organization (WHO) considerates air pollution as one of the most important global priorities. Salamanca, Gto., Mexico has been ranked as one of the most polluted cities in this country. The industry of the area led to a major economic development and rapid population growth in the second half of the twentieth century. The impact in the air quality is important and significant efforts have been made to measure the concentrations of pollutants. The main pollution sources are locally based plants in the chemical and power generation sectors. The registered concerning pollutants are Sulphur Dioxide (SO2) and particles on the order of ∼10 micrometers or less (PM10). The prediction in the concentration of those pollutants can be a powerful tool in order to take preventive measures such as the reduction of emissions and alerting the affected population. In this PhD thesis we propose a model to predict concentrations of pollutants SO2 and PM10 for each monitoring booth in the Atmospheric Monitoring Network Salamanca (REDMAS - for its spanish acronym). The proposed models consider the use of meteorological variables as factors influencing the concentration of pollutants. The information used along this work is the current real data from REDMAS. In the proposed model, Artificial Neural Networks (ANN) combined with clustering algorithms are used. The type of ANN used is the Multilayer Perceptron with a hidden layer, using separate structures for the prediction of each pollutant. The meteorological variables used for prediction were: Wind Direction (WD), wind speed (WS), Temperature (T) and relative humidity (RH). Clustering algorithms, K-means and Fuzzy C-means, are used to find relationships between air pollutants and weather variables under consideration, which are added as input of the RNA. Those relationships provide information to the ANN in order to obtain the prediction of the pollutants. The results of the model proposed in this work are compared with the results of a multivariate linear regression and multilayer perceptron neural network. The evaluation of the prediction is calculated with the mean absolute error, the root mean square error, the correlation coefficient and the index of agreement. The results show the importance of meteorological variables in the prediction of the concentration of the pollutants SO2 and PM10 in the city of Salamanca, Gto., Mexico. The results show that the proposed model perform better than multivariate linear regression and multilayer perceptron neural network. The models implemented for each monitoring booth have the ability to make predictions of air quality that can be used in a system of real-time forecasting and human health impact analysis. Among the main results of the development of this thesis we can cite: A model based on artificial neural network combined with clustering algorithms for prediction with a hour ahead of the concentration of each pollutant (SO2 and PM10) is proposed. A different model was designed for each pollutant and for each of the three monitoring booths of the REDMAS. A model to predict the average of pollutant concentration in the next 24 hours of pollutants SO2 and PM10 is proposed, based on artificial neural network combined with clustering algorithms. Model was designed for each booth of the REDMAS and each pollutant separately. Resumen La contaminación atmosférica es una amenaza aguda, constituye un fenómeno que tiene particular incidencia sobre la salud del hombre. Los cambios que se producen en la composición química de la atmósfera pueden cambiar el clima, producir lluvia ácida o destruir el ozono, fenómenos todos ellos de una gran importancia global. La Organización Mundial de la Salud (OMS) considera la contaminación atmosférica como una de las más importantes prioridades mundiales. Salamanca, Gto., México; ha sido catalogada como una de las ciudades más contaminadas en este país. La industria de la zona propició un importante desarrollo económico y un crecimiento acelerado de la población en la segunda mitad del siglo XX. Las afectaciones en el aire son graves y se han hecho importantes esfuerzos por medir las concentraciones de los contaminantes. Las principales fuentes de contaminación son fuentes fijas como industrias químicas y de generación eléctrica. Los contaminantes que se han registrado como preocupantes son el Bióxido de Azufre (SO2) y las Partículas Menores a 10 micrómetros (PM10). La predicción de las concentraciones de estos contaminantes puede ser una potente herramienta que permita tomar medidas preventivas como reducción de emisiones a la atmósfera y alertar a la población afectada. En la presente tesis doctoral se propone un modelo de predicción de concentraci ón de los contaminantes más críticos SO2 y PM10 para cada caseta de monitorización de la Red de Monitorización Atmosférica de Salamanca (REDMAS). Los modelos propuestos plantean el uso de las variables meteorol ógicas como factores que influyen en la concentración de los contaminantes. La información utilizada durante el desarrollo de este trabajo corresponde a datos reales obtenidos de la REDMAS. En el Modelo Propuesto (MP) se aplican Redes Neuronales Artificiales (RNA) combinadas con algoritmos de agrupamiento. La RNA utilizada es el Perceptrón Multicapa con una capa oculta, utilizando estructuras independientes para la predicción de cada contaminante. Las variables meteorológicas disponibles para realizar la predicción fueron: Dirección de Viento (DV), Velocidad de Viento (VV), Temperatura (T) y Humedad Relativa (HR). Los algoritmos de agrupamiento K-means y Fuzzy C-means son utilizados para encontrar relaciones existentes entre los contaminantes atmosféricos en estudio y las variables meteorológicas. Dichas relaciones aportan información a las RNA para obtener la predicción de los contaminantes, la cual es agregada como entrada de las RNA. Los resultados del modelo propuesto en este trabajo son comparados con los resultados de una Regresión Lineal Multivariable (RLM) y un Perceptrón Multicapa (MLP). La evaluación de la predicción se realiza con el Error Medio Absoluto, la Raíz del Error Cuadrático Medio, el coeficiente de correlación y el índice de acuerdo. Los resultados obtenidos muestran la importancia de las variables meteorológicas en la predicción de la concentración de los contaminantes SO2 y PM10 en la ciudad de Salamanca, Gto., México. Los resultados muestran que el MP predice mejor la concentración de los contaminantes SO2 y PM10 que los modelos RLM y MLP. Los modelos implementados para cada caseta de monitorizaci ón tienen la capacidad para realizar predicciones de calidad del aire, estos modelos pueden ser implementados en un sistema que permita realizar la predicción en tiempo real y analizar el impacto en la salud de la población. Entre los principales resultados obtenidos del desarrollo de esta tesis podemos citar: Se propone un modelo basado en una red neuronal artificial combinado con algoritmos de agrupamiento para la predicción con una hora de anticipaci ón de la concentración de cada contaminante (SO2 y PM10). Se diseñó un modelo diferente para cada contaminante y para cada una de las tres casetas de monitorización de la REDMAS. Se propone un modelo de predicción del promedio de la concentración de las próximas 24 horas de los contaminantes SO2 y PM10, basado en una red neuronal artificial combinado con algoritmos de agrupamiento. Se diseñó un modelo para cada caseta de monitorización de la REDMAS y para cada contaminante por separado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salamanca has been considered among the most polluted cities in Mexico. The vehicular park, the industry and the emissions produced by agriculture, as well as orography and climatic characteristics have propitiated the increment in pollutant concentration of Particulate Matter less than 10 μg/m3 in diameter (PM10). In this work, a Multilayer Perceptron Neural Network has been used to make the prediction of an hour ahead of pollutant concentration. A database used to train the Neural Network corresponds to historical time series of meteorological variables (wind speed, wind direction, temperature and relative humidity) and air pollutant concentrations of PM10. Before the prediction, Fuzzy c-Means clustering algorithm have been implemented in order to find relationship among pollutant and meteorological variables. These relationship help us to get additional information that will be used for predicting. Our experiments with the proposed system show the importance of this set of meteorological variables on the prediction of PM10 pollutant concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results shown that the information obtained in the clustering step allows a prediction of an hour ahead, with data from past 2 hours

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salamanca, situated in center of Mexico is among the cities which suffer most from the air pollution in Mexico. The vehicular park and the industry, as well as orography and climatic characteristics have propitiated the increment in pollutant concentration of Sulphur Dioxide (SO2). In this work, a Multilayer Perceptron Neural Network has been used to make the prediction of an hour ahead of pollutant concentration. A database used to train the Neural Network corresponds to historical time series of meteorological variables and air pollutant concentrations of SO2. Before the prediction, Fuzzy c-Means and K-means clustering algorithms have been implemented in order to find relationship among pollutant and meteorological variables. Our experiments with the proposed system show the importance of this set of meteorological variables on the prediction of SO2 pollutant concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results showed that the information obtained in the clustering step allows a prediction of an hour ahead, with data from past 2 hours.