962 resultados para Matlab toolboxes
Resumo:
Considers various basic features of Matlab
Resumo:
Considers function handles, matrix manipulation, 3D plots and programming
Resumo:
Considers Sampling, Pulse Amplitude Modulation, Multiple Access, Quantisation, Pulse Coded Modulation, Manchester Line Coding, Amplitude Modulation, Double SideBand Suppressed Carrier Modulation, Quadrature Amplitude Modulation and M-ary Shift Keying.
Resumo:
Considers Huffman coding and arithmetic coding
Resumo:
This is a collection of 12 micro-lectures, to be used by students in advance of practical sessions. Durations range for 3 min to 10 min. Topics include: ****** 1. Introduction ****** 2. Data classes ****** 3. Matrices ****** 4. Getting help ****** 5. Index notation ****** 6. 1- and 2-dimensional data ****** 7. 3-dimensional data ****** 8. Booleans (True/False) ****** 9. Designing a programme (Algorithms) ****** 10. Flow control: If-then statements ****** 11. Flow control: For-do loops ****** 12. Making nicer figures ******
Resumo:
Resumen tomado de la revista. N??mero extraordinario titulado: Calidad en la ense??anza universitaria. Innovaciones did??cticas en la Universidad de Sevilla
Resumo:
Resumen tomado de la revista. N??mero extraordinario titulado : Calidad en la ense??anza universitaria. Innovaciones did??cticas en la Universidad de Sevilla
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·
Resumo:
The author developed two GUIs for asymptotic Bode plots and identification from such plots aimed at improving the learning of frequency response methods: these were presented at UKACC Control 2012. Student feedback and reflection by the author suggested various improvements to these GUIs, which have now been implemented. This paper reviews the earlier work, describes the improvements, and includes positive feedback from the students on the GUIs and how they have helped their understanding of the methods.
Resumo:
A MATLAB GUI is presented which is used to help students learn to design controllers in the frequency domain. It complements the author’s two previous GUIs for plotting and identification of systems in the frequency domain. It also incorporates the concept used in the “electronic calculator that makes students think” to assist learning. Positive student feedback affirms that the GUI has helped their understanding.
Resumo:
The MATLAB model is contained within the compressed folders (versions are available as .zip and .tgz). This model uses MERRA reanalysis data (>34 years available) to estimate the hourly aggregated wind power generation for a predefined (fixed) distribution of wind farms. A ready made example is included for the wind farm distribution of Great Britain, April 2014 ("CF.dat"). This consists of an hourly time series of GB-total capacity factor spanning the period 1980-2013 inclusive. Given the global nature of reanalysis data, the model can be applied to any specified distribution of wind farms in any region of the world. Users are, however, strongly advised to bear in mind the limitations of reanalysis data when using this model/data. This is discussed in our paper: Cannon, Brayshaw, Methven, Coker, Lenaghan. "Using reanalysis data to quantify extreme wind power generation statistics: a 33 year case study in Great Britain". Submitted to Renewable Energy in March, 2014. Additional information about the model is contained in the model code itself, in the accompanying ReadMe file, and on our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/
Resumo:
Esse trabalho comparou, para condições macroeconômicas usuais, a eficiência do modelo de Redes Neurais Artificiais (RNAs) otimizadas por Algoritmos Genéticos (AGs) na precificação de opções de Dólar à Vista aos seguintes modelos de precificação convencionais: Black-Scholes, Garman-Kohlhagen, Árvores Trinomiais e Simulações de Monte Carlo. As informações utilizadas nesta análise, compreendidas entre janeiro de 1999 e novembro de 2006, foram disponibilizadas pela Bolsa de Mercadorias e Futuros (BM&F) e pelo Federal Reserve americano. As comparações e avaliações foram realizadas com o software MATLAB, versão 7.0, e suas respectivas caixas de ferramentas que ofereceram o ambiente e as ferramentas necessárias à implementação e customização dos modelos mencionados acima. As análises do custo do delta-hedging para cada modelo indicaram que, apesar de mais complexa, a utilização dos Algoritmos Genéticos exclusivamente para otimização direta (binária) dos pesos sinápticos das Redes Neurais não produziu resultados significativamente superiores aos modelos convencionais.