952 resultados para Mass effective diffusion
Resumo:
We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations.
Resumo:
Quartz crystals in sandstones at depths of 1200 m–1400 m below the surface appear to reach a solubility equilibrium with the 4He-concentration in the surrounding pore- or groundwater after some time. A rather high 4Heconcentration of 4.5x10E-3 cc STP 4He/cm3 of water measured in a groundwater sample would for instance maintain a He pressure of 0.47 atm in a related volume. This value is equal within analytical error to the pressure deduced from the measured helium content of the quartz and its internal helium-accessible volume. To determine this volume, quartz crystals of 0.1 to 1 mm were separated from sandstones and exposed to a helium gas pressure of 32 atm at a temperature of 290°C for up to 2 months. By crushing, melting or isothermal heating the helium was then extracted from the helium saturated samples. Avolume on the order of 0.1% of the crystal volume is only accessible to helium atoms but not to argon atoms or water molecules. By monitoring the diffusive loss of He from the crystals at 350°C an effective diffusion constant on the order of 10E-9 cm2/s is estimated. Extrapolation to the temperature of 70°C in the sediments at a depth of 1400 m gives a typical time of about 100 000 years to reach equilibrium between helium in porewaters and the internal He-accessible volume of quartz crystals. In a geologic situation with stagnant pore- or groundwaters in sediments it therefore appears to be possible with this new method to deduce a 4He depth profile for porewaters in impermeable rocks based on their mineral record.
Resumo:
Titanium nitride (TiN) thin films are coated on HT-9 and MA957 fuel cladding tubes and bars to explore their mechanical strength, thermal stability, diffusion barrier properties, and thermal conductivity properties. The ultimate goal is to implement TiN as an effective diffusion barrier to prevent the inter-diffusion between the nuclear fuel and the cladding material, and thus lead to a longer lifetime of the cladding tubes. Mechanical tests including hardness and scratch tests for the samples before and after thermal cycle tests show that the films have a high hardness of 28GPa and excellent adhesion properties despite the thermal treatment. Thermal conductivity measurements demonstrate that the thin TiN films have very minimal impact on the overall thermal conductivity of the MA957 and HT-9 substrates, i.e., the thermal conductivity of the uncoated HT-9 and MA957 substrates was 26.25 and 28.44 W m-1 K-1, and that of the coated ones was 26.21 and 28.38W m-1 K-1, respectively. A preliminary Ce diffusion test on the couple of Ce/TiN/HT-9 suggests that TiN has excellent material compatibility and good diffusion barrier properties.
Resumo:
Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.
Resumo:
The dynamics, shape, deformation, and orientation of red blood cells in microcirculation affect the rheology, flow resistance and transport properties of whole blood. This leads to important correlations of cellular and continuum scales. Furthermore, the dynamics of RBCs subject to different flow conditions and vessel geometries is relevant for both fundamental research and biomedical applications (e.g drug delivery). In this thesis, the behaviour of RBCs is investigated for different flow conditions via computer simulations. We use a combination of two mesoscopic particle-based simulation techniques, dissipative particle dynamics and smoothed dissipative particle dynamics. We focus on the microcapillary scale of several μm. At this scale, blood cannot be considered at the continuum but has to be studied at the cellular level. The connection between cellular motion and overall blood rheology will be investigated. Red blood cells are modelled as viscoelastic objects interacting hydrodynamically with a viscous fluid environment. The properties of the membrane, such as resistance against bending or shearing, are set to correspond to experimental values. Furthermore, thermal fluctuations are considered via random forces. Analyses corresponding to light scattering measurements are performed in order to compare to experiments and suggest for which situations this method is suitable. Static light scattering by red blood cells characterises their shape and allows comparison to objects such as spheres or cylinders, whose scattering signals have analytical solutions, in contrast to those of red blood cells. Dynamic light scattering by red blood cells is studied concerning its suitability to detect and analyse motion, deformation and membrane fluctuations. Dynamic light scattering analysis is performed for both diffusing and flowing cells. We find that scattering signals depend on various cell properties, thus allowing to distinguish different cells. The scattering of diffusing cells allows to draw conclusions on their bending rigidity via the effective diffusion coefficient. The scattering of flowing cells allows to draw conclusions on the shear rate via the scattering amplitude correlation. In flow, a RBC shows different shapes and dynamic states, depending on conditions such as confinement, physiological/pathological state and cell age. Here, two essential flow conditions are studied: simple shear flow and tube flow. Simple shear flow as a basic flow condition is part of any more complex flow. The velocity profile is linear and shear stress is homogeneous. In simple shear flow, we find a sequence of different cell shapes by increasing the shear rate. With increasing shear rate, we find rolling cells with cup shapes, trilobe shapes and quadrulobe shapes. This agrees with recent experiments. Furthermore, the impact of the initial orientation on the dynamics is studied. To study crowding and collective effects, systems with higher haematocrit are set up. Tube flow is an idealised model for the flow through cylindric microvessels. Without cell, a parabolic flow profile prevails. A single red blood cell is placed into the tube and subject to a Poiseuille profile. In tube flow, we find different cell shapes and dynamics depending on confinement, shear rate and cell properties. For strong confinements and high shear rates, we find parachute-like shapes. Although not perfectly symmetric, they are adjusted to the flow profile and maintain a stationary shape and orientation. For weak confinements and low shear rates, we find tumbling slippers that rotate and moderately change their shape. For weak confinements and high shear rates, we find tank-treading slippers that oscillate in a limited range of inclination angles and strongly change their shape. For the lowest shear rates, we find cells performing a snaking motion. Due to cell properties and resultant deformations, all shapes differ from hitherto descriptions, such as steady tank-treading or symmetric parachutes. We introduce phase diagrams to identify flow regimes for the different shapes and dynamics. Changing cell properties, the regime borders in the phase diagrams change. In both flow types, both the viscosity contrast and the choice of stress-free shape are important. For in vitro experiments, the solvent viscosity has often been higher than the cytosol viscosity, leading to a different pattern of dynamics, such as steady tank-treading. The stress-free state of a RBC, which is the state at zero shear stress, is still controversial, and computer simulations enable direct comparisons of possible candidates in equivalent flow conditions.
Resumo:
The addition of heavy rare earth (RE) elements to Nd2Fe14B based magnets to form (Nd,Dy)2Fe14B is known to increase the coercivity and high temperature performance required for hybrid vehicle electric motors and other extreme temperature applications. Attempts to conserve heavy rare earth elements for high temperature (RE)2Fe14B based magnets have led to the development of a grain boundary diffusion process for bulk magnets. This process relies on transport of a heavy rare earth, such as Dy, into a bulk Nd2Fe14B magnet along pores, a low volume fraction of eutectic liquid along grain boundary grain triple junctions and grain boundaries. This enriches the grain surfaces in Dy through the thickness of the bulk magnet, leading to larger increases coercivity with a smaller Dy concentration than can be achieved with homogeneous alloys. Attempts to carry out the same process during sintering require significant control of Dy transport efficiency. The macroscopic transport of Dy in Nd2.7Fe14B1.4 based powder packs is studied using a 'layered' pellet, where Nd2.7Fe14B1.4powder is an interlayer and Dy source as a center layer. The sintering of this layered pellet provided evidence for very large effective diffusion lengths aided by Dy rich liquid flow through connected porosity. Approaches to controlling Dy transportation include decreasing the liquid phase transport capability of the powder pack by increasing the melting point of the Dy source and the decreasing amount of RE rich liquid in the powder packs. The solid-liquid reaction is studied in which melt spun Nd2.7Fe14B1.4 ribbons are PVD coated with Dy-Fe eutectic composition and then thermally treated. The resulting microstructure from the reaction between Dy-Fe eutectic coating and Nd2.7Fe14B1.4 ribbon is interpreted as support for a proposed dissolution/reprecipitation process between solid and liquid phases. The estimate the diffusion coefficient and the effective diffusion length of Dy sources in Nd2.7Fe14B1.4 layered pellets and melt spun ribbons were obtained from the calculation of Fick's second law combined with EDS results from the experiment. The results indicate that the effective diffusion coefficient of Dy in the layered pellets is higher than the diffusion in ribbons due to its higher porosity than ribbons.
Resumo:
We present here a numerical study of laminar doubly diffusive free convection flows adjacent to a vertical surface in a stable thermally stratified medium. The governing equations of mass, momentum, energy and species are non-dimensionalized. These equations have been solved by using an implicit finite difference method and local non-similarity method. The results show many interesting aspects of complex interaction of the two buoyant mechanisms that have been shown in both the tabular as well as graphical form.
Resumo:
Abstract: We report the growth and the electron cyclotron resonance measurements of n-type Si/Si0.62Ge0.38 and Si0.94Ge0.06/Si0.62Ge0.38 modulation-doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 mu m uniform Si0.62Ge0.38 layers and 0.5 mu m compositionally graded relaxed SiGe layers from 0 to 38% Ge. The buffer layers were annealed at 800 degrees C for 1 h to obtain complete relaxation. A 75 Angstrom Si(SiGe) channel with a 100 Angstrom spacer and a 300 Angstrom 2 X 10(19) cm(-3) n-type supply layer was grown on the top of the buffer layers. The cross-sectional transmission electron microscope reveals that the dense dislocation network is confined to the buffer layer, and relatively few dislocations terminate on the surface. The plan-view image indicates the threading dislocation density is about 4 X 10(6) cm(-2). The far-infrared measurements of electron cyclotron resonance were performed at 4 K with the magnetic field of 4-8 T. The effective masses determined from the slope of the center frequency of the absorption peak versus applied magnetic field plot are 0.203m(0) and 0.193m(0) for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of a two dimensional electron gas in an Si MOSFET (0.198m(0)). The electron effective mass of Si0.94Ge0.06 is reported for the first time and is about 5% lower than that of pure Si.
Resumo:
An analysis has been carried out to study the non-Darcy natural convention flow of Newtonian fluids on a vertical cone embedded in a saturated porous medium with power-law variation of the wall temperature/concentration or heat/mass flux and suction/injection with the streamwise distance x. Both non-similar and self-similar solutions have been obtained. The effects of non-Darcy parameter, ratio of the buoyancy forces due to mass and heat diffusion, variation of wall temperature/concentration or heat/mass flux and suction/injection on the Nusselt and Sherwood numbers have been studied.
Resumo:
Nutrient mass balances have been used to assess a variety of land resource scenarios, at various scales. They are widely used as a simple basis for policy, planning, and regulatory decisions but it is not clear how accurately they reflect reality. This study provides a critique of broad-scale nutrient mass balances, with particular application to the fertiliser use of beef lot-feeding manure in Queensland. Mass balances completed at the district and farm scale were found to misrepresent actual manure management behaviour and potentially the risk of nutrient contamination of water resources. The difficulties of handling stockpile manure and concerns about soil compaction mean that manure is spread thickly over a few paddocks at a time and not evenly across a whole farm. Consequently, higher nutrient loads were applied to a single paddock less frequently than annually. This resulted in years with excess nitrogen, phosphorus, and potassium remaining in the soil profile. This conclusion was supported by evidence of significant nutrient movement in several of the soil profiles studied. Spreading manure is profitable, but maximum returns can be associated with increased risk of nutrient leaching relative to conventional inorganic fertiliser practices. Bio-economic simulations found this increased risk where manure was applied to supply crop nitrogen requirements (the practice of the case study farms, 200-5000 head lot-feeders). Thus, the use of broad-scale mass balances can be misleading because paddock management is spatially heterogeneous and this leads to increased local potential for nutrient loss. In response to the effect of spatial heterogeneity policy makers who intend to use mass balance techniques to estimate potential for nutrient contamination should apply these techniques conservatively.
Resumo:
The gas-diffusion layer (GDL) influences the performance of electrodes employed with polymer electrolyte fuel cells (PEFCs). A simple and effective method for incorporating a porous structure in the electrode GDL using sucrose as the pore former is reported. Optimal (50 w/o) incorporation of a pore former in the electrode GDL facilitates the access of the gaseous reactants to the catalyst sites and improves the fuel cell performance. Data obtained from permeability and porosity measurements, single-cell performance, and impedance spectroscopy suggest that an optimal porosity helps mitigating mass-polarization losses in the fuel cell resulting in a substantially enhanced performance.
Resumo:
We present a simplified theory of the effective momentum mass (EMM) and ballistic current–voltage relationship in a degenerate two-folded highly asymmetric bilayer graphene nanoribbon. With an increase in the gap, the density-of-states in the lower set of subbands increases more than that of the upper set. This results in a phenomenological population inversion of carriers, which is reflected through a net negative differential conductance (NDC). It is found that with the increase of the ribbon width, the NDC also increases. The population inversion also signatures negative values of EMM above a certain ribbon-width for the lower set of subbands, which increases in a step-like manner with the applied longitudinal static bias. The well-known result for symmetric conditions has been obtained as a special case.
Resumo:
This paper presents the results of a computational study of laminar axisymmetric plumes generated by the simultaneous diffusion of thermal energy and chemical species. Species concentrations are assumed small. The plume is treated as a boundary layer. Boussinesq approximations are incorporated and the governing conservation equations of mass, momentum, energy and species are suitably non-dimensionalised. These equations are solved using one time-step-forward explicit finite-difference method. Upwind differencing is employed for convective terms. The results thus obtained are explained in terms of the basic physical mechanisms that govern these flows. They show many interesting aspects of the complex interaction of the two buoyant mechanisms.
Resumo:
We elucidate the relationship between effective mass and carrier concentration in an oxide semiconductor controlled by a double-doping mechanism. In this model oxide system, Sr1-xLaxTiO3-delta, we can tune the effective mass ranging from 6 to 20m(e) as a function of filling (carrier concentration) and the scattering mechanism, which are dependent on the chosen lanthanum-and oxygen-vacancy concentrations. The effective mass values were calculated from the Boltzmann transport equation using the measured transport properties of thin films of Sr1-xLaxTiO3-delta. We show that the effective mass decreases with carrier concentration in this large-band-gap, low-mobility oxide, and this behavior is contrary to the traditional high-mobility, small-effective-mass semiconductors.
Resumo:
Gas-phase controlled absorption of ammonia in foams made of solutions of sulphuric acid has been studied experimentally. Effects of gas-phase concentration of ammonia and type of surfactant on the performance of the foam-bed reactor are investigated. Gas-phase controlled absorption from a spherical bubble is anaylzed using the asymptotic value of Sherwood number (Sh = 6.58), for both negligible as well as significant changes in the volume of the bubble. The experimental data are shown to be in good agreement with the single-stage model of the foam-bed reactor using these asymptotic sub-models, as well as the diffusion-in-sphere analysis available in literature. Influence of effective diffusivity on the time dependence of fractional gas absorption has been found to be unimportant for foam columns with large times of contact. The asymptotic sub-models have been compared and use of the rigid-sphere asymptotic sub-model is recommended for foam columns of practical relevence.