880 resultados para Malaria


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Policy decisions for malaria control are often difficult to make as decision-makers have to carefully consider an array of options and respond to the needs of a large number of stakeholders. This study assessed the factors and specific objectives that influence malaria control policy decisions, as a crucial first step towards developing an inclusive malaria decision analysis support tool (MDAST). METHODS: Country-specific stakeholder engagement activities using structured questionnaires were carried out in Kenya, Uganda and Tanzania. The survey respondents were drawn from a non-random purposeful sample of stakeholders, targeting individuals in ministries and non-governmental organizations whose policy decisions and actions are likely to have an impact on the status of malaria. Summary statistics across the three countries are presented in aggregate. RESULTS: Important findings aggregated across countries included a belief that donor preferences and agendas were exerting too much influence on malaria policies in the countries. Respondents on average also thought that some relevant objectives such as engaging members of parliament by the agency responsible for malaria control in a particular country were not being given enough consideration in malaria decision-making. Factors found to influence decisions regarding specific malaria control strategies included donor agendas, costs, effectiveness of interventions, health and environmental impacts, compliance and/acceptance, financial sustainability, and vector resistance to insecticides. CONCLUSION: Malaria control decision-makers in Kenya, Uganda and Tanzania take into account health and environmental impacts as well as cost implications of different intervention strategies. Further engagement of government legislators and other policy makers is needed in order to increase funding from domestic sources, reduce donor dependence, sustain interventions and consolidate current gains in malaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malaria caused by several species of Plasmodium is major parasitic disease of humans, causing 1-3 million deaths worldwide annually. The widespread resistance of the human parasite to current drug therapies is of major concern making the identification of new drug targets urgent. While the parasite grows and multiplies inside the host erythrocyte it degrades the host cell hemoglobin and utilizes the released amino acids to synthesize its own proteins. The P. falciparum malarial M1 alanyl-aminopeptidase (PfA-M1) is an enzyme involved in the terminal stages of hemoglobin digestion and the generation of an amino acid pool within the parasite. The enzyme has been validated as a potential drug target since inhibitors of the enzyme block parasite growth in vitro and in vivo. In order to gain further understanding of this enzyme, molecular dynamics simulations using data from a recent crystal structure of PfA-M1 were performed. The results elucidate the pentahedral coordination of the catalytic Zn in these metallo-proteases and provide new insights into the roles of this cation and important active site residues in ligand binding and in the hydrolysis of the peptide bond. Based on the data, we propose a two-step catalytic mechanism, in which the conformation of the active site is altered between the Michaelis complex and the transition state. In addition, the simulations identify global changes in the protein in which conformational transitions in the catalytic domain are transmitted at the opening of the N-terminal 8 angstrom-long channel and at the opening of the 30 angstrom-long C-terminal internal chamber that facilitates entry of peptides to the active site and exit of released amino acids. The possible implications of these global changes with regard to enzyme function are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel targets for new drug development are urgently required to combat malaria, a disease that puts half of the world's population at risk. One group of enzymes identified within the genome of the most lethal of the causative agents of malaria, Plasmodium falciparum, that may have the potential to become new targets for antimalarial drug development are the aminopeptidases. These enzymes catalyse the cleavage of the N-terminal amino acids from proteins and peptides. P. falciparum appears to encode for at least nine aminopeptidases, two neutral aminopeptidases, one aspartyl aminopeptidase, one aminopeptidase P, one prolyl aminopeptidase and four methionine aminopeptidases. Recent advances in our understanding of these genes and their protein products are outlined in this review, including their potential for antimalarial drug development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The M17 leucine aminopeptidase of the intraerythrocytic stages of the malaria parasite Plasmodium falciparum (PfLAP) plays a role in releasing amino acids from host hemoglobin that are used for parasite protein synthesis, growth, and development. This enzyme represents a target at which new antimalarials could be designed since metalloaminopeptidase inhibitors prevent the growth of the parasites in vitro and in vivo. A study on the metal ion binding characteristics of recombinant P. falciparum M17 leucine aminopeptidase (rPfLAP) shows that the active site of this exopeptidase contains two metal-binding sites, a readily exchangeable site (site 1) and a tight binding site (site 2). The enzyme retains activity when the metal ion is removed from site 1, while removal of metal ions from both sites results in an inactive apoenzyme that cannot be reactivated by the addition of divalent metal cations. The metal ion at site 1 is readily exchangeable with several divalent metal ions and displays a preference in the order of preference Zn(2+) > Mn(2+) > Co(2+) > Mg(2+). While it is likely that native PfLAP contains a Zn(2+) in site 2, the metal ion located in site 1 may be dependent on the type and concentration of metal ions in the cytosolic compartment of the parasite. Importantly, the type of metal ion present at site 1 influences not only the catalytic efficiency of the enzyme for peptide substrates but also the mode of binding by bestatin, a metal-chelating inhibitor of M17 aminopeptidases with antimalarial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Microbiologia e Parasitologia), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Microbiologia e Parasitologia), Universidade de Lisboa, Faculdade de Medicina, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gametocytes of the malaria parasite Plasmodium falciparum are highly resistant to antimalarial drugs. Its presence in the blood can be detected even after a successful malaria treatment. This paper explains a modified Annular Ring Ratio method which successfully locates and differentiates gametocytes of P. falciparum species in thin blood film images. The method can be used as an efficient tool for gametocyte detection for post-treatment malaria diagnosis. It also identifies the presence of any White Blood Cells (WBCs) in the image, and discards other artifacts and non infected cells. It utilizes the information based on structure, color and geometry of the cells and does not require any segmentation or non-illumination correction techniques that are commonly used for cell detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a fractional model for malaria transmission under control strategies.Weconsider the integer order model proposed by Chiyaka et al. (2008) in [15] and modify it to become a fractional order model. We study numerically the model for variation of the values of the fractional derivative and of the parameter that models personal protection, b. From observation of the figures we conclude that as b is increased from 0 to 1 there is a corresponding decrease in the number of infectious humans and infectious mosquitoes, for all values of α. This means that this result is invariant for variation of fractional derivative, in the values tested. These results are in agreement with those obtained in Chiyaka et al.(2008) [15] for α = 1.0 and suggest that our fractional model is epidemiologically wellposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented the Ph.D degree in Biology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO: A Malária é causada por parasitas do género Plasmodium, sendo a doença parasitária mais fatal para o ser humano. Apesar de, durante o século passado, o desenvolvimento económico e a implementação de diversas medidas de controlo, tenham permitido erradicar a doença em muitos países, a Malária continua a ser um problema de saúde grave, em particular nos países em desenvolvimento. A Malária é transmitida através da picada de uma fêmea de mosquito do género Anopheles. Durante a picada, os esporozoítos são injetados na pele do hospedeiro, seguindo-se a fase hepática e obrigatória do ciclo de vida. No fígado, os esporozoítos infetam os hepatócitos onde se replicam, dentro de um vacúolo parasitário (VP) e de uma forma imunitária silenciosa, em centenas de merozoitos. Estas novas formas do parasita são as responsáveis por infetar os eritrócitos, iniciando a fase sanguínea da doença, onde se os primeiros sintomas se manifestam, tais como a característica febre cíclica. A fase hepática da doença é a menos estudada e compreendida. Mais ainda, as interações entre o VP e os organelos da células hospedeira estão ainda pouco caracterizados. Assim, neste estudo, as interações entre os organelos endocíticos e autofágicos da célula hospedeira e o VP foram dissecados, observando-se que os anfisomas, que são organelos resultantes da intersecção do dois processos de tráfego intracelular, interagem com o parasita. Descobrimos que a autofagia tem também uma importante função imunitária durante a fase hepática inicial, ao passo, que durante o desenvolvimento do parasita, já numa fase mais tardia, o parasita depende da interação com os endossomas tardios e anfisomas para crescer. Vesiculas de BSA, EGF e LC3, foram, também, observadas dentro do VP, sugerindo que os parasitas são capazes de internalizar material endocítico e autofágico do hospedeiro. Mais ainda, mostramos que esta interação depende da cinase PIKfyve, responsável pela conversão do fosfoinositidio-3-fosfato no fosfoinositidio-3,5-bifosfato, uma vez que inibindo esta cinase o parasita não é capaz de crescer normalmente. Finalmente, mostramos que a proteína TRPML1, uma proteína efetora do fosfoinositidio-3,5-bifosfato, e envolvida no processo de fusão das membranas dos organelos endocíticos e autofágicos, também é necessária para o crescimento do parasita. Desta forma, o nosso estudo sugere que a membrana do VP funde com vesiculas endocíticas e autofágicas tardias, de uma forma dependente do fositidio-3,5-bifosfato e do seu effetor TRPML1, permitindo a troca de material com a célula hospedeira. Concluindo, os nossos resultados evidenciam que o processo autofágico que ocorre na célula hospedeira tem um papel duplo durante a fase hepática da malaria. Enquanto numa fase inicial os hepatócitos usam o processo autofágico como forma de defesa contra o parasita, já durante a fase de replicação o VP funde com vesiculas autofágicas e endocíticas de forma a obter os nutrientes necessários ao seu desenvolvimento.--------- ABSTRACT: Malaria, which is caused by parasites of the genus Plasmodium, is the most deadly parasitic infection in humans. Although economic development and the implementation of control measures during the last century have erradicated the disease from many areas of the world, it remains a serious human health issue, particularly in developing countries. Malaria is transmitted by female mosquitoes of the genus Anopheles. During the mosquito blood meal, Plasmodium spp. sporozoites are injected into the skin dermis of the vertebrate host, followed by an obligatory liver stage. Upon entering the liver, Plasmodium parasites infect hepatocytes and silently replicate inside a host cell-derived parasitophorous vacuole (PV) into thousands of merozoites. These new parasite forms can infect red blood cells initiating the the blood stage of the disease which shows the characteristic febrile malaria episodes. The liver stage is the least characterized step of the malaria infection. Moreover, the interactions between the Plasmodium spp. PV and the host cell trafficking pathways are poorly understood. We dissected the interaction between Plasmodium parasites and the host cell endocytic and autophagic pathways and we found that both pathways intersect and interconnect in the close vicinity of the parasite PV, where amphisomes are formed and accumulate. Interestingly, we observed a clearance function for autophagy in hepatocytes infected with Plasmodium berghei parasites at early infection times, whereas during late liver stage development late endosomes and amphisomes are required for parasite growth. Moreover, we found the presence of internalized BSA, EGF and LC3 inside parasite vacuoles, suggesting that the parasites uptake endocytic and autophagic cargo. Furthermore, we showed that the interaction between the PV and host traffic pathways is dependent on the kinase PIKfyve, which converts the phosphoinositide PI(3)P into PI(3,5)P2, since PIKfyve inhibition caused a reduction in parasite growth. Finally, we showed that the PI(3,5)P2 effector protein TRPML1, which is involved in late endocytic and autophagic membrane fusion, is also required for parasite development. Thus, our studies suggest that the parasite parasitophorous vacuole membrane (PVM) is able to fuse with late endocytic and autophagic vesicles in a PI(3,5)P2- and TRPML1-dependent manner, allowing the exchange of material between the host cell and the parasites, necessary for the rapid development of the latter that is seen during the liver stage of infection. In conclusion, we present evidence supporting a specific and essential dual role of host autophagy during the course of Plasmodium liver infection. Whereas in the initial hours of infection the host cell uses autophagy as a cell survival mechanism to fight the infection, during the replicative phase the PV fuses with host autophagic and endocytic vesicles to obtain nutrients required for parasite growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malaria, a disease caused by Plasmodium, represents a major health problem with a still disconcertingly high mortality rate (655 000 malaria deaths were estimated by the World Health Organization in 2012), mainly in Africa [1]. After a bite by an infected Anopheles mosquito occurs, Plasmodium sporozoites reach their target organ, the liver, within minutes. After traversing several hepatocytes, the parasite invades a final one and establishes a parasitophorous vacuole, where it replicates exponentially generating thousands of infective merozoites, the red blood cell infectious forms that are released in the blood stream. The liver stage is the first obligatory phase of malaria infection and, although no symptoms are associated with it, it is absolutely crucial to the establishment of a successful infection.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malaria is one of the most devastating diseases in the world. In Plasmodium endemic regions, pregnant women are among the most vulnerable groups. Pregnancy Associated Malaria (PAM) threatens both maternal and foetal lives. Despite differences between human and mouse placentas PAM mouse models recapitulate key pathological features of human PAM. Here we describe new PAM models of mid gestation infection in the C57BL/6 mouse.(...)