960 resultados para Magnetron-sputtering deposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stoichiometric Er silicate thin films, monosilicate (Er2SiO 5) and disilicate (Er2Si2O7), have been grown on c-Si substrates by rf magnetron sputtering. The influence of annealing temperature in the range 1000-1200 °C in oxidizing ambient (O 2) on the structural and optical properties has been studied. In spite of the known reactivity of rare earth silicates towards silicon, Rutherford backscattering spectrometry shows that undesired chemical reactions between the film and the substrate can be strongly limited by using rapid thermal treatments. Monosilicate and disilicate films crystallize at 1100 and 1200 °C, respectively, as shown by x-ray diffraction analysis; the crystalline structures have been identified in both cases. Moreover, photoluminescence (PL) measurements have demonstrated that the highest PL intensity is obtained for Er2Si2O7 film annealed at 1200 °C. In fact, this treatment allows us to reduce the defect density in the film, in particular by saturating oxygen vacancies, as also confirmed by the increase of the lifetime of the PL signal. © 2008 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural properties and the room temperature luminescence of Er2O3 thin films deposited by RF magnetron sputtering have been studied. Films characterized by good morphological properties have been obtained by using a SiO2 interlayer between the film and the Si substrate. The evolution of the properties of the Er2O3 films due to rapid thermal annealing processes in O2 ambient performed at temperatures in the range 800-1200 °C has been investigated in details. The existence of well-defined annealing conditions (temperature of 1100 °C or higher) allowing to avoid the occurrence of extensive chemical reactions with the oxidized substrate has been demonstrated and an increase of the photoluminescence (PL) intensity by about a factor of 40 with respect to the as deposited material has been observed. The enhanced efficiency of the photon emission process has been correlated with the longer lifetime of the PL signal. The same annealing processes are less effective when Er2O3 is deposited on Si. In this latter case interfacial reactions and pit formation occur, leading to a material characterized by stronger non-radiative phenomena that limit the PL efficiency. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural properties and the room temperature luminescence of Er 2O3 thin films deposited by magnetron sputtering have been studied. In spite of the well-known high reactivity of rare earth oxides towards silicon, films characterized by good morphological properties have been obtained by using a SiO2 interlayer between the film and the silicon substrate. The evolution of the properties of the Er2O3 films due to thermal annealing processes in oxygen ambient performed at temperatures in the range of 800-1200°C has been investigated in detail. The existence of well defined annealing conditions (rapid treatments at a temperature of 1100°C or higher) allowing to avoid the occurrence of extensive chemical reactions with the oxidized substrate has been demonstrated; under these conditions, the thermal process has a beneficial effect on both structural and optical properties of the film, and an increase of the photoluminescence (PL) intensity by about a factor of 40 with respect to the as-deposited material has been observed. The enhanced efficiency of the photon emission process has been correlated with the longer lifetime of the PL signal. Finally, the conditions leading to a reaction of Er2O3 with the substrate have been also identified, and evidences about the formation of silicate-like phases have been collected. © 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report about the magnetoresistive properties of calcium-doped lanthanum manganate thin films grown by RF magnetron sputtering on single crystalline LaAlO3 and MgO substrates. Two orientations of the magnetic field with respect to the electrical current have been studied: (i) magnetic field in the plane of the film and parallel to the electrical current, and (ii) magnetic field perpendicular to the plane of the film. The film grown on LaAlO 3 is characterised by an unusual magnetoresistive behaviour when the magnetic field is applied perpendicular to the film plane: the appearance of two bumps in the field dependence of the resistance is shown to be related to the occurrence of anisotropic magnetoresistive effects in manganate films. © 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

E2SiO5 thin films were fabricated on Si substrate by reactive magnetron sputtering method with subsequent annealing treatment. The morphology properties of as-deposited films have been studied by scanning electron microscope. The fraction of erbium is estimated to be 23.5 at% based on Rutherford backscattering measurement in as-deposited Er-Si-O film. X-ray diffraction measurement revealed that Er2SiO5 crystalline structure was formed as sample treated at 1100 degrees C for 1 h in O-2 atmosphere. Through proper thermal treatment, the 1.53 mu m Er3+-related emission intensity can be enhanced by a factor of 50 with respect to the sample annealed at 800 degrees C. Analysis of pump-power dependence of Er3+ PL intensity indicated that the upconversion phenomenon could be neglected even under a high photon flux of 10(21) (photons/cm(2)/sec). Temperature-dependent photoluminescence (PL) of Er2SiO5 was studied and showed a weak thermal quenching factor of 2. Highly efficienct photoluminescence of Er2SiO5 films has been demonstrated with Er3+ concentration of 10(22)/cm(3), and it opens a promising way towards future Si-based light source for Si photonics. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field emissions (FE) from La-doped zinc oxide (ZnO) films are both experimentally and theoretically investigated. Owing to the La-doped effect, the FE characteristic of ZnO films is remarkably enhanced compared with an undoped sample, and a startling low turn-on electric field of about 0.4 V/mu m (about 2.5 V/mu m for the undoped ZnO films) is obtained at an emission current density of 1 mu A/cm(2) and the stable current density reaches 1 mA/cm(2) at an applied field of about 2.1 V/mu m. A self-consistent theoretical analysis shows that the novel FE enhancement of the La-doped sample may be originated from its smaller work function. Due to the effect of doping with La, the Fermi energy level lifts, electrons which tunnelling from surface barrier are consumedly enhancing, and then leads to a huge change of field emission current. Interestingly, it suggests a new effective method to improve the FE properties of film materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ZnO films were grown on Ag/Si(001) substrates by sputtering Ag and ZnO targets successively in a pure Ar ambient. A significant enhancement of ZnO ultraviolet emission and a reduction of its full width of half maximum have been observed while introducing a 100 nm Ag interlayer between ZnO film and Si substrate. Furthermore, a complete suppression of the defect related visible emission was also found for the ZnO/Ag/Si sample. This improved optical performance of ZnO is attributed to the resonant coupling between Ag surface plasmon and ultraviolet emission of ZnO. (c) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ZnO films were deposited on c-plane sapphire, Si (0 0 1) and MgAl2O4 (1 1 1) substrates in pure Ar ambient at different substrate temperatures ranging from 400 to 750 degrees C by radio frequency magnetron sputtering. X-ray diffraction, photoluminescence and Hall measurements were used to evaluate the growth temperature and the substrate effects on the properties of ZnO films. The results show that the crystalline quality of the ZnO films improves with increasing the temperature up to 600 degrees C, the crystallinity of the films is degraded as the growth temperature increasing further, and the ZnO film with the best crystalline quality is obtained on sapphire at 600 degrees C. The intensity of the photoluminescence and the electrical properties strongly depend on the crystalline quality of the ZnO films. The ZnO films with the better crystallinity have the stronger ultraviolet emission, the higher mobility and the lower residual carrier concentration. The effects of crystallinity on light emission and electrical properties, and the possible origin of the n-type conductivity of the undoped ZnO films are also discussed. (C) 2009 Elsevier B. V. All rights reserved.