746 resultados para Machine vision


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis deals with distance transforms which are a fundamental issue in image processing and computer vision. In this thesis, two new distance transforms for gray level images are presented. As a new application for distance transforms, they are applied to gray level image compression. The new distance transforms are both new extensions of the well known distance transform algorithm developed by Rosenfeld, Pfaltz and Lay. With some modification their algorithm which calculates a distance transform on binary images with a chosen kernel has been made to calculate a chessboard like distance transform with integer numbers (DTOCS) and a real value distance transform (EDTOCS) on gray level images. Both distance transforms, the DTOCS and EDTOCS, require only two passes over the graylevel image and are extremely simple to implement. Only two image buffers are needed: The original gray level image and the binary image which defines the region(s) of calculation. No other image buffers are needed even if more than one iteration round is performed. For large neighborhoods and complicated images the two pass distance algorithm has to be applied to the image more than once, typically 3 10 times. Different types of kernels can be adopted. It is important to notice that no other existing transform calculates the same kind of distance map as the DTOCS. All the other gray weighted distance function, GRAYMAT etc. algorithms find the minimum path joining two points by the smallest sum of gray levels or weighting the distance values directly by the gray levels in some manner. The DTOCS does not weight them that way. The DTOCS gives a weighted version of the chessboard distance map. The weights are not constant, but gray value differences of the original image. The difference between the DTOCS map and other distance transforms for gray level images is shown. The difference between the DTOCS and EDTOCS is that the EDTOCS calculates these gray level differences in a different way. It propagates local Euclidean distances inside a kernel. Analytical derivations of some results concerning the DTOCS and the EDTOCS are presented. Commonly distance transforms are used for feature extraction in pattern recognition and learning. Their use in image compression is very rare. This thesis introduces a new application area for distance transforms. Three new image compression algorithms based on the DTOCS and one based on the EDTOCS are presented. Control points, i.e. points that are considered fundamental for the reconstruction of the image, are selected from the gray level image using the DTOCS and the EDTOCS. The first group of methods select the maximas of the distance image to new control points and the second group of methods compare the DTOCS distance to binary image chessboard distance. The effect of applying threshold masks of different sizes along the threshold boundaries is studied. The time complexity of the compression algorithms is analyzed both analytically and experimentally. It is shown that the time complexity of the algorithms is independent of the number of control points, i.e. the compression ratio. Also a new morphological image decompression scheme is presented, the 8 kernels' method. Several decompressed images are presented. The best results are obtained using the Delaunay triangulation. The obtained image quality equals that of the DCT images with a 4 x 4

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ongoing development of the digital media has brought a new set of challenges with it. As images containing more than three wavelength bands, often called spectral images, are becoming a more integral part of everyday life, problems in the quality of the RGB reproduction from the spectral images have turned into an important area of research. The notion of image quality is often thought to comprise two distinctive areas – image quality itself and image fidelity, both dealing with similar questions, image quality being the degree of excellence of the image, and image fidelity the measure of the match of the image under study to the original. In this thesis, both image fidelity and image quality are considered, with an emphasis on the influence of color and spectral image features on both. There are very few works dedicated to the quality and fidelity of spectral images. Several novel image fidelity measures were developed in this study, which include kernel similarity measures and 3D-SSIM (structural similarity index). The kernel measures incorporate the polynomial, Gaussian radial basis function (RBF) and sigmoid kernels. The 3D-SSIM is an extension of a traditional gray-scale SSIM measure developed to incorporate spectral data. The novel image quality model presented in this study is based on the assumption that the statistical parameters of the spectra of an image influence the overall appearance. The spectral image quality model comprises three parameters of quality: colorfulness, vividness and naturalness. The quality prediction is done by modeling the preference function expressed in JNDs (just noticeable difference). Both image fidelity measures and the image quality model have proven to be effective in the respective experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dirt counting and dirt particle characterisation of pulp samples is an important part of quality control in pulp and paper production. The need for an automatic image analysis system to consider dirt particle characterisation in various pulp samples is also very critical. However, existent image analysis systems utilise a single threshold to segment the dirt particles in different pulp samples. This limits their precision. Based on evidence, designing an automatic image analysis system that could overcome this deficiency is very useful. In this study, the developed Niblack thresholding method is proposed. The method defines the threshold based on the number of segmented particles. In addition, the Kittler thresholding is utilised. Both of these thresholding methods can determine the dirt count of the different pulp samples accurately as compared to visual inspection and the Digital Optical Measuring and Analysis System (DOMAS). In addition, the minimum resolution needed for acquiring a scanner image is defined. By considering the variation in dirt particle features, the curl shows acceptable difference to discriminate the bark and the fibre bundles in different pulp samples. Three classifiers, called k-Nearest Neighbour, Linear Discriminant Analysis and Multi-layer Perceptron are utilised to categorize the dirt particles. Linear Discriminant Analysis and Multi-layer Perceptron are the most accurate in classifying the segmented dirt particles by the Kittler thresholding with morphological processing. The result shows that the dirt particles are successfully categorized for bark and for fibre bundles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monet teollisuuden konenäkö- ja hahmontunnistusongelmat ovat hyvin samantapaisia, jolloin prototyyppisovelluksia suunniteltaessa voitaisiin hyödyntää pitkälti samoja komponentteja. Oliopohjaiset sovelluskehykset tarjoavat erinomaisen tavan nopeuttaa ohjelmistokehitystä uudelleenkäytettävyyttä parantamalla. Näin voidaan sekä mahdollistaa konenäkösovellusten laajempi käyttö että säästää kustannuksissa. Tässä työssä esitellään konenäkösovelluskehys, joka on perusarkkitehtuuriltaan liukuhihnamainen. Ylätason rakenne koostuu sensorista, datankäsittelyoperaatioista, piirreirrottimesta sekä luokittimesta. Itse sovelluskehyksen lisäksi on toteutettu joukko kuvankäsittely- ja hahmontunnistusoperaatioita. Sovelluskehys nopeuttaa selvästi ohjelmointityötä ja helpottaa uusien kuvankäsittelyoperaatioiden lisää mistä.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Learning from demonstration becomes increasingly popular as an efficient way of robot programming. Not only a scientific interest acts as an inspiration in this case but also the possibility of producing the machines that would find application in different areas of life: robots helping with daily routine at home, high performance automata in industries or friendly toys for children. One way to teach a robot to fulfill complex tasks is to start with simple training exercises, combining them to form more difficult behavior. The objective of the Master’s thesis work was to study robot programming with visual input. Dynamic movement primitives (DMPs) were chosen as a tool for motion learning and generation. Assuming a movement to be a spring system influenced by an external force, making this system move, DMPs represent the motion as a set of non-linear differential equations. During the experiments the properties of DMP, such as temporal and spacial invariance, were examined. The effect of the DMP parameters, including spring coefficient, damping factor, temporal scaling, on the trajectory generated were studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of understanding how humans perceive the quality of a reproduced image is of interest to researchers of many fields related to vision science and engineering: optics and material physics, image processing (compression and transfer), printing and media technology, and psychology. A measure for visual quality cannot be defined without ambiguity because it is ultimately the subjective opinion of an “end-user” observing the product. The purpose of this thesis is to devise computational methods to estimate the overall visual quality of prints, i.e. a numerical value that combines all the relevant attributes of the perceived image quality. The problem is limited to consider the perceived quality of printed photographs from the viewpoint of a consumer, and moreover, the study focuses only on digital printing methods, such as inkjet and electrophotography. The main contributions of this thesis are two novel methods to estimate the overall visual quality of prints. In the first method, the quality is computed as a visible difference between the reproduced image and the original digital (reference) image, which is assumed to have an ideal quality. The second method utilises instrumental print quality measures, such as colour densities, measured from printed technical test fields, and connects the instrumental measures to the overall quality via subjective attributes, i.e. attributes that directly contribute to the perceived quality, using a Bayesian network. Both approaches were evaluated and verified with real data, and shown to predict well the subjective evaluation results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tässä työssä kehitettiin teollisuusrobottijärjestelmiin soveltuva, mallinsovitusta hyödyntävä konenäköohjelmisto. Yleiskäyttöiseksi tarkoitettuun ohjelmistoon tehtiin toiminnot konenäköjärjestelmän kalibrointiin, mallinsovitukseen käytettävien mallien hallintaan ja tulosten välitykseen teollisuusroboteille. Ohjelmiston tuli olla myös niin helppokäyttöinen, että sen käyttö onnistuu lyhyellä koulutuksella. Ohjelmistoa sovellettiin puuikkunapuitteiden robotisoituun maalausjärjestelmään. Maalausjärjestelmästä onnistuttiin tekemään automaattinen, tuotteisiin mukautuva ja virhetilanteista toipuva pitkälti toimitetun konenäköjärjestelmän ansiosta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Local features are used in many computer vision tasks including visual object categorization, content-based image retrieval and object recognition to mention a few. Local features are points, blobs or regions in images that are extracted using a local feature detector. To make use of extracted local features the localized interest points are described using a local feature descriptor. A descriptor histogram vector is a compact representation of an image and can be used for searching and matching images in databases. In this thesis the performance of local feature detectors and descriptors is evaluated for object class detection task. Features are extracted from image samples belonging to several object classes. Matching features are then searched using random image pairs of a same class. The goal of this thesis is to find out what are the best detector and descriptor methods for such task in terms of detector repeatability and descriptor matching rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Työn tarkoituksena oli tarkastella uutta kuvantamistekniikkaa käyttäen happikaasun dispergointia keskisakeuksisen massasuspension joukkoon laboratoriosekoittimessa. Työssä pyrittiin tarkastelemaan muodostuvan dispersion homogeenisuutta neljästä eri kuvauspisteestä sekoittimen kannesta ja kyljestä. Samalla tarkasteltiin myös sekoittimen tehonkulutusta sekä tehonkulutuksen ja aikaansaadun dispersion välistä yhteyttä. Työn yhtenä tarkoituksena oli myös tarkastella uuden kuvantamistekniikan mahdollisuuksia tämäntyyppisissä sovellutuksissa, sillä työ kuuluu PulpVision-projektiin, jossa kehitetään massa- ja paperiteollisuuden uusia konenäkösovellutuksia. Työn kokeellinen osuus koostui sekoituskokeista, joissa tarkasteltiin neljästä kuvauspisteestä kahdella sekoittimen nopeudella mänty- ja koivususpensioihin muodostuvaa kuplakokojakaumaa. Sekoituskokeiden lisäksi tehtiin tehonkulutuskokeita, joissa tarkasteltiin sekoittimen tehonkulutusta sekoittimen täyttöasteen funktiona koivu- ja mäntysuspensioilla sekä vedellä. Työn tuloksien perusteella todettiin, että koivususpensiosta havaittujen kuplien pinta-ala oli noin puolet mäntysuspensiosta havaittujen kuplien pinta-alasta. Sekoittimen roottorin pyörimisnopeuden puolittuessa suspensioon dispergoidun hapen kuplakoko kasvoi huomattavasti. Neljästä kuvausyhteestä tarkasteltuna havaittiin pienimpien kuplien esiintyvän sekoittimen alaosassa. Mäntysuspension tehonkulutuksen havaittiin kasvavan viidenneksellä, kun sekoittimen täyttöaste kasvoi 10 %, kun taas koivususpension tehonkulutuksen kasvu oli tästä vain puolet. Kuvantamislaitteiston todettiin olevan tämänkaltaiseen sovellutukseen riittävä, varsinkin kun valonlähteenä käytetään pulssilaseria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the introduction of automatic orbital welding in pipeline application in 1961, significant improvements have been obtained in orbital pipe welding systems. Requirement of more productive welding systems for pipeline application forces manufacturers to innovate new advanced systems and welding processes for orbital welding method. Various methods have been used to make welding process adaptive, such as visual sensing, passive visual sensing, real-time intelligent control, scan welding technique, multi laser vision sensor, thermal scanning, adaptive image processing, neural network model, machine vision, and optical sensing. Numerous studies are reviewed and discussed in this Master’s thesis and based on a wide range of experiments which already have been accomplished by different researches the vision sensor are reported to be the best choice for adaptive orbital pipe welding system. Also, in this study the most welding processes as well as the most pipe variations welded by orbital welding systems mainly for oil and gas pipeline applications are explained. The welding results show that Gas Metal Arc Welding (GMAW) and its variants like Surface Tension Transfer (STT) and modified short circuit are the most preferred processes in the welding of root pass and can be replaced to the Gas Tungsten Arc Welding (GTAW) in many applications. Furthermore, dual-tandem gas metal arc welding technique is currently considered the most efficient method in the welding of fill pass. Orbital GTAW process mostly is applied for applications ranging from single run welding of thin walled stainless tubes to multi run welding of thick walled pipes. Flux cored arc welding process is faster process with higher deposition rate and recently this process is getting more popular in pipe welding applications. Also, combination of gas metal arc welding and Nd:YAG laser has shown acceptable results in girth welding of land pipelines for oil and gas industry. This Master’s thesis can be implemented as a guideline in welding of pipes and tubes to achieve higher quality and efficiency. Also, this research can be used as a base material for future investigations to supplement present finding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diplomityön tavoitteena oli kehittää vuokamallisille kartonkipakkauksille laadunvarmistuslaitteisto. Kirjallisen osan alussa esiteltiin vuokamallisten kartonkipakkausten valmistusprosessia. Tästä siirryttiin laatuasioihin, jossa tärkeimmät asiat olivat kartonkivuokien valmistuksessa esiintyvät laatupoikkeamat ja konenäkö. Tutkimusosan alussa esitellään Lappeenrannan teknillisessä yliopistossa kehitetty kartonkivuokien valmistuslinjasto. Tämän jälkeen vaatimuslistan pohjalta suunnitellaan kyseiseen linjastoon sopiva automaattinen laadunvalvontalaite, johon sisältyy myös kartonkivuokien siirtolaite. Suunnitteluprosessi aloitettiin koekuvaamalla kartonkivuokia erilaisilla kameroilla ja valaistusmenetelmillä. Koekuvausten perusteella valittiin konenäkölaitteisto. Tämän jälkeen toiminnoista luotiin periaatepiirroksia, joista kehitettiin varsinainen suunnitelma. Työn tuloksena saatiin suunnitelma konenäköön perustuvan automaattisen laadunvalvontalaitteen rakentamiselle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis is related to the topic of image-based characterization of fibers in pulp suspension during the papermaking process. Papermaking industry is focusing on process control optimization and automatization, which makes it possible to manufacture highquality products in a resource-efficient way. Being a part of the process control, pulp suspension analysis allows to predict and modify properties of the end product. This work is a part of the tree species identification task and focuses on analysis of fiber parameters in the pulp suspension at the wet stage of paper production. The existing machine vision methods for pulp characterization were investigated, and a method exploiting direction sensitive filtering, non-maximum suppression, hysteresis thresholding, tensor voting, and curve extraction from tensor maps was developed. Application of the method to the microscopic grayscale pulp images made it possible to detect curves corresponding to fibers in the pulp image and to compute their morphological characteristics. Performance of the method was evaluated based on the manually produced ground truth data. An accuracy of fiber characteristics estimation, including length, width, and curvature, for the acacia pulp images was found to be 84, 85, and 60% correspondingly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena oli tutkia ja selvittää kuormakoneen takarunkorakenteen silloitushitsauksen robotisointia. Työ päätettiin rajata koskemaan vain tiettyä moduulia takarungosta. Työssä kartoitettiin tarvittava laitteisto, selvitettiin runkomoduulin silloitusajat sekä arvioitiin investoinnin kannattavuutta. Silloituksen suorittavan järjestelmän vaatimuksena oli, että sen tulee asettaa osat paikoilleen hitsauskiinnittimeen ja tehdä tarvittavat silloitushitsaukset automaattisesti. Sopivaksi laitteistoksi osoittautui taloudellisuuden ja toiminnallisuuden näkökulmasta yhdestä kappaleenkäsittely- sekä hitsausrobotista muodostuva järjestelmä. Kappaleenkäsittelijän ohjauksessa käytetään konenäköä sekä osien paikannuksessa että laadunvarmistuksessa. Robotit liikkuvat yhteisellä lineaariradalla, jonka rinnalla on kappaleenkäsittelylaitteistoja hitsauskiinnittimineen. Robotisoinnin käyttöönotolla yhden takarungon moduulien kokoonpanoon ja silloitukseen käytettävä aika pienenee alle puoleen manuaaliseen työhön verrattuna. Näin saavutetaan merkittäviä kustannussäästöjä. Lisäksi hitsauskiinnittimet voivat olla verrattain yksinkertaisia manuaalityöhön verrattuna, jolloin myös säästetään työkaluinvestoinneissa. Robotisointiprojektin jatkotoimenpiteitä ovat laajamittaiset tuotantosimulaatiot layoutin, laitteiston sekä työkiertojen tarkaksi määrittämiseksi. Lisäksi itse tuotetta on muokattava paremmin robottisilloitukseen sopivaksi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis researches automatic traffic sign inventory and condition analysis using machine vision and pattern recognition methods. Automatic traffic sign inventory and condition analysis can be used to more efficient road maintenance, improving the maintenance processes, and to enable intelligent driving systems. Automatic traffic sign detection and classification has been researched before from the viewpoint of self-driving vehicles, driver assistance systems, and the use of signs in mapping services. Machine vision based inventory of traffic signs consists of detection, classification, localization, and condition analysis of traffic signs. The produced machine vision system performance is estimated with three datasets, from which two of have been been collected for this thesis. Based on the experiments almost all traffic signs can be detected, classified, and located and their condition analysed. In future, the inventory system performance has to be verified in challenging conditions and the system has to be pilot tested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of automatic recognition of the fish from the video sequences is discussed in this Master’s Thesis. This is a very urgent issue for many organizations engaged in fish farming in Finland and Russia because the process of automation control and counting of individual species is turning point in the industry. The difficulties and the specific features of the problem have been identified in order to find a solution and propose some recommendations for the components of the automated fish recognition system. Methods such as background subtraction, Kalman filtering and Viola-Jones method were implemented during this work for detection, tracking and estimation of fish parameters. Both the results of the experiments and the choice of the appropriate methods strongly depend on the quality and the type of a video which is used as an input data. Practical experiments have demonstrated that not all methods can produce good results for real data, whereas on synthetic data they operate satisfactorily.