968 resultados para MULTICOMMUTED FLOW ANALYSIS
Resumo:
* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be
Resumo:
In this manuscript, an automatic setup for screening of microcystins in surface waters by employing photometric detection is described. Microcystins are toxins delivered by cyanobacteria within an aquatic environment, which have been considered strongly poisonous for humans. For that reason, the World Health Organization (WHO) has proposed a provisional guideline value for drinking water of 1 mu g L-1. In this work, we developed an automated equipment setup, which allows the screening of water for concentration of microcystins below 0.1 mu g V. The photometric method was based on the enzyme-linked immunosorbent assay (ELISA) and the analytical signal was monitored at 458 nm using a homemade LED-based photometer. The proposed system was employed for the detection of microcystins in rivers and lakes waters. Accuracy was assessed by processing samples using a reference method and applying the paired t-test between results. No significant difference at the 95% confidence level was observed. Other useful features including a linear response ranging from 0.05 up to 2.00 mu g L-1 (R-2 =0.999) and a detection limit of 0.03 mu g L-1 microcystins were achieved. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Computations have been carried out for simulating supersonic flow through a set of converging-diverging nozzles with their expanding jets forming a laser cavity and flow patterns through diffusers, past the cavity. A thorough numerical investigation with 3-D RANS code is carried out to capture the flow distribution which comprises of shock patterns and multiple supersonic jet interactions. The analysis of pressure recovery characteristics during the flow through the diffusers is an important parameter of the simulation and is critical for the performance of the laser device. The results of the computation have shown a close agreement with the experimentally measured parameters as well as other established results indicating that the flow analysis done is found to be satisfactory.
Resumo:
As a green process, electrochemistry in aqueous solution without a supporting electrolyte has been described based on a simple polyelectrolyte-functionalized ionic liquid (PFIL)-modified electrode. The studied PFIL material combines features of ionic liquids and traditional polyelectrolytes. The ionic liquid part provides a high ionic conductivity and affinity to many different compounds. The polyelectrolyte part has a good stability in aqueous solution and a capability of being immobilized on different substrates. The electrochemical properties of such a PFIL-modified electrode assembly in a supporting electrolyte-free solution have been investigated by using an electrically neutral electroactive species, hydroquinone ( HQ) as the model compound. The partition coefficient and diffusion coefficient of HQ in the PFIL film were calculated to be 0.346 and 4.74 X 10(-6) cm(2) s(-1), respectively. Electrochemistry in PFIL is similar to electrochemistry in a solution of traditional supporting electrolytes, except that the electrochemical reaction takes place in a thin film on the surface of the electrode. PFILs are easily immobilized on solid substrates, are inexpensive and electrochemically stable. A PFIL-modified electrode assembly is successfully used in the flow analysis of HQ by amperometric detection in solution without a supporting electrolyte.
Resumo:
A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH(3)CH(2)OCS(2)(-) at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate. EtX(-), with 2.0 mol L(-1) HCl generating ethanol and carbon disulfide. CS(2). A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS(2) is selectively detected by UV absorbance at 206 nm (epsilon = 65,000 L mol(-1) cm(-1)). The measured absorbance is directly proportional to EtX(-) concentration present in the sample solutions. The Beer`s law is obeyed in a 1 x 10(-6) to 2 x 10(-4) mol L(-1) concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 x 10(-7) mol L(-1), corresponding to 38 mu g L. At flow rates of 200 mu L min(-1) of the donor stream and 100 mu L min(-1) of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 mu L injections of 1 x 10(-5) mol L(-1) EtX(-)). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX(-) concentration during a laboratory study of the EtX(-) adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX(-) at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore. (C) 2010 Elsevier By. All rights reserved.
Resumo:
The Greenland NEEM (North Greenland Eemian Ice Drilling) operation in 2010 provided the first opportunity to combine trace-gas measurements by laser spectroscopic instruments and continuous-flow analysis along a freshly drilled ice core in a field-based setting. We present the resulting atmospheric methane (CH4) record covering the time period from 107.7 to 9.5 ka b2k (thousand years before 2000 AD). Companion discrete CH4 measurements are required to transfer the laser spectroscopic data from a relative to an absolute scale. However, even on a relative scale, the high-resolution CH4 data set significantly improves our knowledge of past atmospheric methane concentration changes. New significant sub-millennial-scale features appear during interstadials and stadials, generally associated with similar changes in water isotopic ratios of the ice, a proxy for local temperature. In addition to the midpoint of Dansgaard–Oeschger (D/O) CH4 transitions usually used for cross-dating, sharp definition of the start and end of these events brings precise depth markers (with ±20 cm uncertainty) for further cross-dating with other palaeo- or ice core records, e.g. speleothems. The method also provides an estimate of CH4 rates of change. The onsets of D/O events in the methane signal show a more rapid rate of change than their endings. The rate of CH4 increase associated with the onsets of D/O events progressively declines from 1.7 to 0.6 ppbv yr−1 in the course of marine isotope stage 3. The largest observed rate of increase takes place at the onset of D/O event #21 and reaches 2.5 ppbv yr−1.
Resumo:
System analysis within the traction power system is vital to the design and operation of an electrified railway. Loads in traction power systems are often characterised by their mobility, wide range of power variations, regeneration and service dependence. In addition, the feeding systems may take different forms in AC electrified railways. Comprehensive system studies are usually carried out by computer simulation. A number of traction power simulators have been available and they allow calculation of electrical interaction among trains and deterministic solutions of the power network. In the paper, a different approach is presented to enable load-flow analysis on various feeding systems and service demands in AC railways by adopting probabilistic techniques. It is intended to provide a different viewpoint to the load condition. Simulation results are given to verify the probabilistic-load-flow models.
Resumo:
This paper presents the simulation model development of passenger flow in a metro station. The model allows studies of passenger flow in stations with different layouts and facilities, thus providing valuable information, such as passenger flow and density of passenger at critical locations and passenger-handling facilities within a station, to the operators. The adoption of the concept of Petri nets in the simulation model is discussed. Examples are provided to demonstrate its application to passenger flow analysis, train scheduling and the testing of alternative station layouts.
Resumo:
Probabilistic load flow techniques have been adopted in AC electrified railways to study the load demand under various train service conditions. This paper highlights the differences in probabilistic load flow analysis between the usual power systems and power supply systems in AC railways; discusses the possible difficulties in problem formulation and presents the link between train movement and the corresponding power demand for load flow calculation.
Resumo:
Power load flow analysis is essential for system planning, operation, development and maintenance. Its application on railway supply system is no exception. Railway power supplies system distinguishes itself in terms of load pattern and mobility, as well as feeding system structure. An attempt has been made to apply probability load flow (PLF) techniques on electrified railways in order to examine the loading on the feeding substations and the voltage profiles of the trains. This study is to formulate a simple and reliable model to support the necessary calculations for probability load flow analysis in railway systems with autotransformer (AT) feeding system, and describe the development of a software suite to realise the computation.
Resumo:
This article integrates the material/energy flow analysis into a production frontier framework to quantify resource efficiency (RE). The emergy content of natural resources instead of their mass content is used to construct aggregate inputs. Using the production frontier approach, aggregate inputs will be optimised relative to given output quantities to derive RE measures. This framework is superior to existing RE indicators currently used in the literature. Using the exergy/emergy content in constructing aggregate material or energy flows overcomes a criticism that mass content cannot be used to capture different quality of differing types of resources. Derived RE measures are both ‘qualitative’ and ‘quantitative’, whereas existing RE indicators are only qualitative. An empirical examination into the RE of 116 economies was undertaken to illustrate the practical applicability of the new framework. The results showed that economies, on average, could reduce the consumption of resources by more than 30% without any reduction in per capita gross domestic product (GDP). This calculation occurred after adjustments for differences in the purchasing power of national currencies. The existence of high variations in RE across economies was found to be positively correlated with participation of people in labour force, population density, urbanisation, and GDP growth over the past five years. The results also showed that economies of a higher income group achieved higher RE, and those economies that are more dependent on imports and primary industries would have lower RE performance.
Resumo:
The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.
Resumo:
This paper describes an approach for the analysis and design of 765kV/400kV EHV transmission system which is a typical expansion in Indian power grid system, based on the analysis of steady state and transient over voltages. The approach for transmission system design is iterative in nature. The first step involves exhaustive power flow analysis, based on constraints such as right of way, power to be transmitted, power transfer capabilities of lines, existing interconnecting transformer capabilities etc. Acceptable bus voltage profiles and satisfactory equipment loadings during all foreseeable operating conditions for normal and contingency operation are the guiding criteria. Critical operating strategies are also evolved in this initial design phase. With the steady state over voltages obtained, comprehensive dynamic and transient studies are to be carried out including switching over voltages studies. This paper presents steady state and switching transient studies for alternative two typical configurations of 765kV/400 kV systems and the results are compared. Transient studies are carried out to obtain the peak values of 765 kV transmission systems and are compared with the alternative configurations of existing 400 kV systems.
Investigation of schemes for incorporating generator Q limits in the fast decoupled load flow method
Resumo:
Fast Decoupled Load Flow (FDLF) is a very popular and widely used power flow analysis method because of its simplicity and efficiency. Even though the basic FDLF algorithm is well investigated, the same is not true in the case of additional schemes/modifications required to obtain adjusted load flow solutions using the FDLF method. Handling generator Q limits is one such important feature needed in any practical load flow method. This paper presents a comprehensive investigation of two classes of schemes intended to handle this aspect i.e. the bus type switching scheme and the sensitivity scheme. We propose two new sensitivity based schemes and assess their performance in comparison with the existing schemes. In addition, a new scheme to avoid the possibility of anomalous solutions encountered while using the conventional schemes is also proposed and evaluated. Results from extensive simulation studies are provided to highlight the strengths and weaknesses of these existing and proposed schemes, especially from the point of view of reliability.
Resumo:
This paper focuses on the financial analysis involved in setting up of fish farming on a small-scale in a homestead. About 0.5 acres of land was used for the construction of pond which as a stock of Clarias spp/ Heterobranchus spp and Tilapia spp at the ratio of one to three for a period of 12 months. The land/land development cost is N26,500.00, pond construction cost, N35,700.00, equipment cost, N2,650.00 and stock/Input requirement cost N155,727.00 while the revenue from sales is N376,000.00. A cash flow analysis is also calculated for the fish farm, which is N155,423.00 for first year cash flow, and appropriate profit/mosses were calculated for five-year production cycle of N1,036,515.00 million. At the end appreciable profit is realized from the enterprises. This type of enterprises is viable for small-scale farmers to practices and adopted for financial support for their family