925 resultados para METHYL ACRYLATE
Resumo:
A simple and efficient route for the synthesis of cyclic polymer systems is presented. Linear furan protected α-maleimide-ω-cyclopentadienyl functionalized precursors (poly(methyl methacrylate) and poly(tert-butyl acrylate)) were synthesized via atom transfer radical polymerization (ATRP) and subsequent substitution of the bromine end-group with cyclopentadiene. Upon heating at high dilution, deprotection of the dieneophile occurs followed by an intramolecular Diels–Alder reaction yielding a high purity cyclic product.
Resumo:
The development of new materials for water purification is of universal importance. Among these types of materials are layered double hydroxides (LDHs). Non-ionic materials pose a significant problem as pollutants. The interaction of methyl orange (MO) and acidic scarlet GR (GR) adsorption on hydrocalumite (Ca/Al-LDH-Cl) were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), scanning electron microscope (SEM) and near-infrared spectroscopy (NIR). The XRD results revealed that the basal spacing of Ca/Al-LDH-MO was expanded to 2.45 nm, and the MO molecules were intercalated with a inter-penetrating bilayer model in the gallery of LDH, with 49o tilting angle. Yet Ca/Al-LDH-GR was kept the same d-value as Ca/Al-LDH-Cl. The NIR spectrum for Ca/Al-LDH-MO showed a prominent band around 5994 cm-1, assigned to the combination result of the N-H stretching vibrations, which was considered as a mark to assess MO- ion intercalation into Ca/Al-LDH-Cl interlayers. From SEM images, the particle morphology of Ca/Al-LDH-MO mainly changed to irregular platelets, with a “honey-comb” like structure. Yet the Ca/Al-LDH-GR maintained regular hexagons platelets, which was similar to that of Ca/Al-LDH-Cl. All results indicated that MO- ion was intercalated into Ca/Al-LDH-Cl interlayers, and acidic scarlet GR was only adsorped upon Ca/Al-LDH-Cl surfaces.
Resumo:
In the title squaraine dye solvate, C26H24N2O2·2CHCl3, the dye molecule is essentially planar, except for the methyl groups, having a maximum deviation over the 26-membered delocalized bond system of 0.060 (2) Å. It possesses crystallographic twofold rotational symmetry with the indole ring systems adopting a syn conformation. The molecular structure features intramolecular N-HO hydrogen bonds enclosing conjoint S7 ring motifs about one of the dioxocyclobutene O atoms, while the two chloroform solvent molecules are linked to the second O atom through C-HO hydrogen bonds.
Resumo:
The structures and thermodynamic properties of methyl derivatives of ammonia–borane (BH3NH3, AB) have been studied with the frameworks of density functional theory and second-order Møller–Plesset perturbation theory. It is found that, with respect to pure AB, methyl ammonia–boranes show higher complexation energies and lower reaction enthalpies for the release of H2, together with a slight increment of the activation barrier. These results indicate that the methyl substitution can enhance the reversibility of the system and prevent the formation of BH3/NH3, but no enhancement of the release rate of H2 can be expected.
Resumo:
The deposition of hyperthermal CH3 on diamond (001)-(2×1) surface at room temperature has been studied by means of molecular dynamics simulation using the many-body hydrocarbon potential. The energy threshold effect has been observed. That is, with fixed collision geometry, chemisorption can occur only when the incident energy of CH3 is above a critical value (Eth). Increasing the incident energy, dissociation of hydrogen atoms from the incident molecule was observed. The chemisorption probability of CH3 as a function of its incident energy was calculated and compared with that of C2H2. We found that below 10 eV, the chemisorption probability of C2H2 is much lower than that of CH3 on the same surface. The interesting thing is that it is even lower than that of CH3 on a hydrogen covered surface at the same impact energy. It indicates that the reactive CH3 molecule is the more important species than C2H2 in diamond synthesis at low energy, which is in good agreement with the experimental observation.
Resumo:
This study investigated the preparation of methyl ester (Biodiesel) from peanut oil by transesterification method and its effect on DI diesel engine. Two parameters were measured during the engine operation: one is engine performance (brake thermal efficiency and brake specific fuel consumption), and the other is the exhaust emissions (NOx and CO). The result showed that, when compared with neat diesel fuel, the brake thermal efficiency of biodiesel blend was almost similar or a slight lower. However, brake specific fuel consumption (bsfc) was a little higher than neat diesel. CO was lower and NOx was little higher with biodiesel blend than that of diesel. The engine performance for B10 and B20 was very similar. At medium and high load conditions the engine emissions for B10 and B20 has no significant variation. Hence, B20 can safely be used in diesel engine without any significant penalty in engine performance and emissions.
Resumo:
Infrared spectra are reported of methyl formate and formaldehyde adsorbed at 300 K on silica, Cu/SiO2 reduced in hydrogen and Cu/SiO2 which had been oxidised by exposure to nitrous oxide after reduction. Silanol groups on silica form hydrogen bonds with carbonyl groups in weakly adsorbed methyl formate molecules. Methyl formate ligates via its carbonyl groups to Cu atoms in the surface of reduced copper. A low residual concentration of surface oxygen on copper promoted the slow reaction of ligated methyl formate to give a bridging formate species on copper and adsorbed methoxy groups. Methyl formate did not ligate to an oxidised copper surface but was rapidly chemisorbed to give unidentate formate and methoxy species. Formaldehyde slowly polymerises on silica to form trioxane and other oxymethylene species. The reaction is faster over Cu/SiO2 which, in the reduced state, also catalyses the formation of bridging formate anions adsorbed on copper. The reaction between formaldehyde and oxidised Cu/SiO2 leads to both unidentate and bidentate formate and adsorbed water.
Resumo:
FTIR spectra are reported of methyl formate adsorbed at 295 K on ZnO/SiO2, reduced Cu/ZnO/SiO2 and on Cu/ZnO/SiO2 which had been preoxidised by exposure to nitrous oxide. Methyl formate on ZnO/SiO2 gave adsorbed zinc formate species and strongly physisorbed molecular methanol on silica. The comparable reaction of methyl formate with reduced Cu/ZnO/SiO2 catalyst produced bridging formate species on copper and a diminished quantity of zinc formate relative to that formed on ZnO/SiO2 catalyst. This effect is explained in terms of site blockage on the ZnO surface by small copper clusters. Addition of methyl formate to a reoxidised Cu/ZnO/SiO2 catalyst produced a considerably greater amount of formate species on zinc oxide and methoxy groups on copper were detected. The increase in concentration of zinc formate species was rationalised in terms of rearrangement of unidentate copper formate species to become bonded to copper and zinc oxide sites located at the interface between these two components.
Resumo:
With the advent of alternative fuels, such as biodiesels and related blends, it is important to develop an understanding of their effects on inter-cycle variability which, in turn, influences engine performance as well as its emission. Using four methanol trans-esterified biomass fuels of differing carbon chain length and degree of unsaturation, this paper provides insight into the effect that alternative fuels have on inter-cycle variability. The experiments were conducted with a heavy-duty Cummins, turbo-charged, common-rail compression ignition engine. Combustion performance is reported in terms of the following key in-cylinder parameters: indicated mean effective pressure (IMEP), net heat release rate (NHRR), standard deviation of variability (StDev), coefficient of variation (CoV), peak pressure, peak pressure timing and maximum rate of pressure rise. A link is also established between the cyclic variability and oxygen ratio, which is a good indicator of stoichiometry. The results show that the fatty acid structures did not have a significant effect on injection timing, injection duration, injection pressure, StDev of IMEP, or the timing of peak motoring and combustion pressures. However, a significant effect was noted on the premixed and diffusion combustion proportions, combustion peak pressure and maximum rate of pressure rise. Additionally, the boost pressure, IMEP and combustion peak pressure were found to be directly correlated to the oxygen ratio. The emission of particles positively correlates with oxygen content in the fuel as well as in the air-fuel mixture resulting in a higher total number of particles per unit of mass.
Resumo:
Multiple sclerosis (MS) is a chronic neurological disease characterized by central nervous system (CNS) inflammation and demyelination. The C677T substitution variant in the methylenetetrahydrofolate reductase (MTHFR) gene has been associated with increased levels of circulating homocysteine and is a mild risk factor for vascular disease. Higher blood levels of homocysteine have also been reported in MS. Thus, the C677T mutation of the MTHFR gene may influence MS susceptibility. Noradrenaline, a neurotransmitter believed to play an immunosupressive role in neuroinflammatory disorders, is catabolized by catechol-O-methyl transferase (COMT). The COMT G158A substitution results in a three- to four-fold decreased activity of the COMT enzyme, which may influence CNS synaptic catecholamine breakdown and could also play a role in MS inflammation. We tested DNA from Australian MS patients and unaffected control subjects, matched for gender, age and ethnicity. Specifically, we genotyped the MTHFR C677T and the COMT G158A mutations. Genotype distributions showed that the homozygous mutant MTHFR genotype (T/T) and the COMT (H/H) genotype were slightly over-represented in the MS group (16% versus 11% and 24% versus 19%, respectively), but both variations failed to reach statistical significance (P=0.15 and P=0.32, respectively). Hence, results from the present study do not support a major role for either functional gene mutation in MS susceptibility.
Resumo:
Chemical reaction studies of N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide-based ionic liquid with the lithium metal surface were performed using ab initio molecular dynamics (aMD) simulations and X-ray Photoelectron Spectroscopy (XPS). The molecular dynamics simulations showed rapid and spontaneous decomposition of the ionic liquid anion, with subsequent formation of long-lived species such as lithium fluoride. The simulations also revealed the cation to retain its structure by generally moving away from the lithium surface. The XPS experiments showed evidence of decomposition of the anion, consistent with the aMD simulations and also of cation decomposition and it is envisaged that this is due to the longer time scale for the XPS experiment compared to the time scale of the aMD simulation. Overall experimental results confirm the majority of species suggested by the simulation. The rapid chemical decomposition of the ionic liquid was shown to form a solid electrolyte interphase composed of the breakdown products of the ionic liquid components in the absence of an applied voltage.
Resumo:
Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH3C CCH3) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH3 loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP + 2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C-4 side-chain, followed by cyclization and/or low-energy H atom beta-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph center dot)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH3 loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).