870 resultados para MESANGIAL OVERLOAD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been purported that inflammatory cytokines may be responsible for the aetiology of overtraining. The aim of the present study was to investigate the relationship between self-reported measures of overtraining and inflammatory cytokines. Eight elite male rowers were monitored in their natural training environment for 8 weeks prior to the 2007 Rowing World Championships. During this period of intense endurance training, self-report measures of overtraining and inflammatory cytokines (Interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12p70, and Tumor Necrosis Factor (TNF)-) were assessed fortnightly. Consistent with previous findings, proinflammatory cytokines IL-1β and TNF- were significantly associated (p ≤ 0.05) with measures of depressed mood, sleep disturbances, and stress. Similarly, IL-6 was significantly associated (p ≤ 0.01) with measures of depressed mood, sleep disturbances, and fatigue. These results are consistent with previous hypotheses describing how overtraining may be caused by excessive cytokine release, and lend further support for a cytokine hypothesis of overtraining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper is an essential trace metal that is required for the catalysis of several important cellular enzymes. However, since an excess of copper can also harm cells due to its potential to catalyze the generation of toxic reactive oxygen species, transport of copper and the cellular copper content are tightly regulated. This chapter summarizes the current knowledge on the importance of copper for cellular processes and on the mechanisms involved in cellular copper uptake, storage and export. In addition, we will give an overview on disturbances of copper homeostasis that are characterized by copper overload or copper deficiency or have been connected with neurodegenerative disorders. © Springer Science+Business Media Dordrecht 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim this study was to evaluate systolic and diastolic function in volume overload induced myocardial hypertrophy in rats.Volume overload myocardial hypertrophy was induced in thirteen male Wistar rats by creating infrarenal arteriovenous fistula (AVF). The results were compared with a SHAM operated group (n = 11). Eight weeks after surgery, tail-cuff blood pressure was recorded, then rats were sacrificed for isolated heart studies using Langendorffs preparation.AVF rats presented increased left and right ventricular weights, compared to controls. The increased normalized ventricular volume (V0/LVW, 0.141 +/- 0.035 mL/g vs. 0.267 +/- 0.071 mL/g, P < 0.001) in the AVF group indicated chamber dilation. Myocardial hydroxyproline concentration remained unchanged. There was a significant decrease in +dP/dt (3318 +/- 352 mm Hg s(-1) vs. 2769 +/- 399 mm Hg s(-1); P=0,002), end-systolic pressure-volume relation (246 +/- 56 mm Hg mL(-1) vs. 114 +/- 63 mm Hg mL(-1);, P < 0,001), and -dP/dt (1746 +/- 240 min Hg s(-1) vs. 1361 +/- 217 mm Hg s(-1), P < 0.001) in the AVF group, which presented increased ventricular compliance (Delta V-25: SHAM=0.172 +/- 0.05 mL vs. AVF=0.321 +/- 0.072 mL, P < 0.001) with preserved myocardial passive stiffness (Strain(25): SHAM=13.5 +/- 3.0% vs. AVF=12.3 +/- 1.9%, P > 0.05).We conclude that volume-overload induced hypertrophy causes myocardial systolic and diastolic dysfunction with increased ventricular compliance. These haemodynamic features help to explain the long-term compensatory phase of chronic volume overload before transition to overt congestive heart failure. (c) 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The role of growth hormone (GH) in cardiac remodelling and function in chronic and persistent pressure overload-induced left ventricular hypertrophy has not been defined. The aim of the present study was to assess short-term GH treatment on left ventricular function and remodelling in rats with chronic pressure overload-induced hypertrophy.2. Twenty-six weeks after induction of ascending aortic stenosis (AAS), rats were treated with daily subcutaneous injections of recombinant human GH (1 mg/kg per day; AAS-GH group) or saline (AAS-P group) for 14 days. Sham-operated animals served as controls. Left ventricular function was assessed by echocardiography before and after GH treatment. Myocardial fibrosis was evaluated by histological analysis.3. Before GH treatment, AAS rats presented similar left ventricular function and structure. Treatment of rats with GH after the AAS procedure did not change bodyweight or heart weight, both of which were higher in the AAS groups than in the controls. After GH treatment, posterior wall shortening velocity (PWSV) was lower in the AAS-P group than in the control group. However, in the AAS-GH group, PWSV was between that in the control and AAS-P groups and did not differ significantly from either group. Fractional collagen (% of total area) was significantly higher in the AAS-P and AAS-GH groups compared with control (10.34 +/- 1.29, 4.44 +/- 1.37 and 1.88 +/- 0.88%, respectively; P < 0.05) and was higher still in the AAS-P group compared with the AAS-GH group.4. The present study has shown that short-term administration of GH to rats with chronic pressure overload-induced left ventricular hypertrophy induces cardioprotection by attenuating myocardial fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to demonstrate that hypertrophied cardiac muscle is more sensitive to volume-overload than normal cardiac muscle. We assessed the mechanical function of isolated left ventricular papillary muscle from male spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY) Submitted to volume overload caused by aortocaval fistula (ACF) for 30 days. Muscles were perfused with Krebs-Henseleit solution at 28degreesC and Studied isometrically at a Stimulation rate of 0.2 Hz. The ACF increased the right and left ventricular weight-to-body weight ratio in WKY rats; it also promoted right ventricular hypertrophy and further increased the basal hypertrophy in the left ventricle from SHR. The arterial systolic pressure was greater in SHR than in WKY rats, and decreased with ACF in both groups. Developed tension (DT) and maximum rate of DT (+dT/dt) were greater in the SHR-control than in the WKY-control (P<0.05); the time from peak tension to 50% relaxation (RT1/2) was similar in these animals. ACE did not change any parameters ill the SHR group and increased the resting tension in the WKY group. However, the significant difference observed between myocardial contraction performance in WKY-controls and SHR-controls disappeared when the SHR-ACF and WKY-controls were compared. Furthermore, RT1/2 increased significantly ill the SHR-ACF in relation to the WKY-controls. In conclusion, the data lead LIS to infer that volume-overload for 30 days promotes more mechanical functional changes in hypertrophied muscle than in normal cardiac muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The restructuring of energy markets to provide free access to the networks and the consequent increase of the number of power transactions has been causing congestions in transmission systems. As consequence, the networks suffer overloads in a more frequent way. One parameter that has strong influence on transfer capability is the reactive power flow. A sensitivity analysis can be used to find the best solution to minimize the reactive power flows and relief, the overload in one transmission line. The proposed methodology consists on the computation of two sensitivities based on the use of the Lc matrix from CRIC (Constant Reactive Implicitly Coupled) power flow method, that provide a set of actions to reduce the reactive power flow and alleviate overloads in the lines: (a) sensitivity between reactive power flow in lines and reactive power injections in the buses, (b) sensitivity between reactive power flow in lines and transformer's taps. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has significant morbidity and mortality as 20-40% of patients progress to end-stage renal disease within 20 years of onset. In order to gain insight into the molecular mechanisms involved in the progression of IgAN, we systematically evaluated renal biopsies from such patients. This showed that the MAPK/ERK signaling pathway was activated in the mesangium of patients presenting with over 1 g/day proteinuria and elevated blood pressure, but absent in biopsy specimens of patients with IgAN and modest proteinuria (<1 g/day). ERK activation was not associated with elevated galactose-deficient IgA1 or IgG specific for galactose-deficient IgA1 in the serum. In human mesangial cells in vitro, ERK activation through mesangial IgA1 receptor (CD71) controlled pro-inflammatory cytokine secretion and was induced by large-molecular-mass IgA1-containing circulating immune complexes purified from patient sera. Moreover, IgA1-dependent ERK activation required renin-angiotensin system as its blockade was efficient in reducing proteinuria in those patients exhibiting substantial mesangial activation of ERK. Thus, ERK activation alters mesangial cell-podocyte crosstalk, leading to renal dysfunction in IgAN. Assessment of MAPK/ERK activation in diagnostic renal biopsies may predict the therapeutic efficacy of renin-angiotensin system blockers in IgAN. Kidney International (2012) 82, 1284-1296; doi:10.1038/ki.2012.192; published online 5 September 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Cardiac remodeling in uremia is characterized by left ventricular hypertrophy, interstitial fibrosis and microvascular disease. Cardiovascular disease is the leading cause of death in uremic patients, but coronary events alone are not the prevalent cause, sudden death and heart failure are. We studied the cardiac remodeling in experimental uremia, evaluating the isolated effect of parathyroid hormone (PTH) and phosphorus. Methods. Wistar rats were submitted to parathyroidectomy (PTx) and 5/6 nephrectomy (Nx); they also received vehicle (V) and PTH at normal (nPTH) or high (hPTH) doses. They were fed with a poor-phosphorus (pP) or rich-phosphorus (rP) diet and were divided into the following groups: 'Sham': G1 (V + normal-phosphorus diet (np)) and 'Nx + PTx': G2 (nPTH + pP), G3 (nPTH + rP), G4 (hPTH + pP) and G5 (hPTH + rP). After 8 weeks, biochemical analysis, myocardium morphometry and arteriolar morphological analysis were performed. In addition, using immunohistochemical analysis, we evaluated angiotensin II, alpha-actin, transforming growth factor-beta (TGF-beta) and nitrotyrosine, as well as fibroblast growth factor-23 (FGF-23), fibroblast growth factor receptor-1 (FGFR-1) and runt-related transcription factor-2 (Runx-2) expression. Results. Nx animals presented higher serum creatinine levels as well as arterial hypertension. Higher PTH levels were associated with myocardial hypertrophy and fibrosis as well as a higher coronary lesion score. High PTH animals also presented a higher myocardial expression of TGF-beta, angiotensin II, FGF-23 and nitrotyrosine and a lower expression of alpha-actin. Phosphorus overload was associated with higher serum FGF-23 levels and Runx-2, as well as myocardial hypertrophy. FGFR-1 was positive in the cardiomyocytes of all groups as well as in calcified coronaries of G4 and G5 whereas Runx-2 was positive in G3, G4 and G5. Conclusion. In uremia, PTH and phosphorus overload are both independently associated with major changes related to the cardiac remodeling process, emphasizing the need for a better control of these factors in chronic kidney disease.