991 resultados para MECHANICAL FLOCCULATION UNIT
Resumo:
Background:Mechanical ventilation is a critical component of paediatric intensive care therapy. It is indicated when the patient’s spontaneous ventilation is inadequate to sustain life. Weaning is the gradual reduction of ventilatory support and the transfer of respiratory control back to the patient. Weaning may represent a large proportion of the ventilatory period. Prolonged ventilation is associated with significant morbidity, hospital cost, psychosocial and physical risks to the child and even death. Timely and effective weaning may reduce the duration of mechanical ventilation and may reduce the morbidity and mortality associated with prolonged ventilation. However, no consensus has been reached on criteria that can be used to identify when patients are ready to wean or the best way to achieve it.Objectives:To assess the effects of weaning by protocol on invasively ventilated critically ill children. To compare the total duration of invasive mechanical ventilation of critically ill children who are weaned using protocols versus those weaned through usual (non-protocolized) practice. To ascertain any differences between protocolized weaning and usual care in terms of mortality, adverse events, intensive care unit length of stay and quality of life.Search methods:We searched the Cochrane Central Register of Controlled Trials (CENTRAL; The Cochrane Library, Issue 10, 2012), MEDLINE (1966 to October 2012), EMBASE (1988 to October 2012), CINAHL (1982 to October 2012), ISI Web of Science and LILACS. We identified unpublished data in the Web of Science (1990 to October 2012), ISI Conference Proceedings (1990 to October 2012) and Cambridge Scientific Abstracts (earliest to October 2012). We contacted first authors of studies included in the review to obtain further information on unpublished studies or work in progress. We searched reference lists of all identified studies and review papers for further relevant studies. We applied no language or publication restrictions.Selection criteriaWe included randomized controlled trials comparing protocolized weaning (professional-led or computer-driven) versus non-protocolized weaning practice conducted in children older than 28 days and younger than 18 years.Data collection and analysis:Two review authors independently scanned titles and abstracts identified by electronic searching. Three review authors retrieved and evaluated full-text versions of potentially relevant studies, independently extracted data and assessed risk of bias.Main results:We included three trials at low risk of bias with 321 children in the analysis. Protocolized weaning significantly reduced total ventilation time in the largest trial (260 children) by a mean of 32 hours (95% confidence interval (CI) 8 to 56; P = 0.01). Two other trials (30 and 31 children, respectively) reported non-significant reductions with a mean difference of -88 hours (95% CI -228 to 52; P = 0.2) and -24 hours (95% CI -10 to 58; P = 0.06). Protocolized weaning significantly reduced weaning time in these two smaller trials for a mean reduction of 106 hours (95% CI 28 to 184; P = 0.007) and 21 hours (95% CI 9 to 32; P < 0.001). These studies reported no significant effects for duration of mechanical ventilation before weaning, paediatric intensive care unit (PICU) and hospital length of stay, PICU mortality or adverse events.Authors' conclusions:Limited evidence suggests that weaning protocols reduce the duration of mechanical ventilation, but evidence is inadequate to show whether the achievement of shorter ventilation by protocolized weaning causes children benefit or harm.
Resumo:
Background: This is an update of a review last published in Issue 5, 2010, of The Cochrane Library. Reducing weaning time is desirable in minimizing potential complications from mechanical ventilation. Standardized weaning protocols are purported to reduce time spent on mechanical ventilation. However, evidence supporting their use in clinical practice is inconsistent. Objectives: The first objective of this review was to compare the total duration of mechanical ventilation of critically ill adults who were weaned using protocols versus usual (non-protocolized) practice.The second objective was to ascertain differences between protocolized and non-protocolized weaning in outcomes measuring weaning duration, harm (adverse events) and resource use (intensive care unit (ICU) and hospital length of stay, cost).The third objective was to explore, using subgroup analyses, variations in outcomes by type of ICU, type of protocol and approach to delivering the protocol (professional-led or computer-driven). Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 1, 2014), MEDLINE (1950 to January 2014), EMBASE (1988 to January 2014), CINAHL (1937 to January 2014), LILACS (1982 to January 2014), ISI Web of Science and ISI Conference Proceedings (1970 to February 2014), and reference lists of articles. We did not apply language restrictions. The original search was performed in January 2010 and updated in January 2014.Selection criteriaWe included randomized controlled trials (RCTs) and quasi-RCTs of protocolized weaning versus non-protocolized weaning from mechanical ventilation in critically ill adults. Data collection and analysis: Two authors independently assessed trial quality and extracted data. We performed a priori subgroup and sensitivity analyses. We contacted study authors for additional information. Main results: We included 17 trials (with 2434 patients) in this updated review. The original review included 11 trials. The total geometric mean duration of mechanical ventilation in the protocolized weaning group was on average reduced by 26% compared with the usual care group (N = 14 trials, 95% confidence interval (CI) 13% to 37%, P = 0.0002). Reductions were most likely to occur in medical, surgical and mixed ICUs, but not in neurosurgical ICUs. Weaning duration was reduced by 70% (N = 8 trials, 95% CI 27% to 88%, P = 0.009); and ICU length of stay by 11% (N = 9 trials, 95% CI 3% to 19%, P = 0.01). There was significant heterogeneity among studies for total duration of mechanical ventilation (I2 = 67%, P < 0.0001) and weaning duration (I2 = 97%, P < 0.00001), which could not be explained by subgroup analyses based on type of unit or type of approach. Authors' conclusions: There is evidence of reduced duration of mechanical ventilation, weaning duration and ICU length of stay with use of standardized weaning protocols. Reductions are most likely to occur in medical, surgical and mixed ICUs, but not in neurosurgical ICUs. However, significant heterogeneity among studies indicates caution in generalizing results. Some study authors suggest that organizational context may influence outcomes, however these factors were not considered in all included studies and could not be evaluated. Future trials should consider an evaluation of the process of intervention delivery to distinguish between intervention and implementation effects. There is an important need for further development and research in the neurosurgical population.
Resumo:
IntroductionAutomated weaning systems may improve adaptation of mechanical support for a patient’s ventilatory needs and facilitate systematic and early recognition of their ability to breathe spontaneously and the potential for discontinuation of ventilation. Our objective was to compare mechanical ventilator weaning duration for critically ill adults and children when managed with automated systems versus non-automated strategies. Secondary objectives were to determine differences in duration of ventilation, intensive care unit (ICU) and hospital length of stay (LOS), mortality, and adverse events.MethodsElectronic databases were searched to 30 September 2013 without language restrictions. We also searched conference proceedings; trial registration websites; and article reference lists. Two authors independently extracted data and assessed risk of bias. We combined data using random-effects modelling.ResultsWe identified 21 eligible trials totalling 1,676 participants. Pooled data from 16 trials indicated that automated systems reduced the geometric mean weaning duration by 30% (95% confidence interval (CI) 13% to 45%), with substantial heterogeneity (I2 = 87%, P <0.00001). Reduced weaning duration was found with mixed or medical ICU populations (42%, 95% CI 10% to 63%) and Smartcare/PS™ (28%, 95% CI 7% to 49%) but not with surgical populations or using other systems. Automated systems reduced ventilation duration with no heterogeneity (10%, 95% CI 3% to 16%) and ICU LOS (8%, 95% CI 0% to 15%). There was no strong evidence of effect on mortality, hospital LOS, reintubation, self-extubation and non-invasive ventilation following extubation. Automated systems reduced prolonged mechanical ventilation and tracheostomy. Overall quality of evidence was high.ConclusionsAutomated systems may reduce weaning and ventilation duration and ICU stay. Due to substantial trial heterogeneity an adequately powered, high quality, multi-centre randomized controlled trial is needed.
Resumo:
Background Automated closed loop systems may improve adaptation of mechanical support for a patient's ventilatory needs and facilitate systematic and early recognition of their ability to breathe spontaneously and the potential for discontinuation of ventilation. This review was originally published in 2013 with an update published in 2014. Objectives The primary objective for this review was to compare the total duration of weaning from mechanical ventilation, defined as the time from study randomization to successful extubation (as defined by study authors), for critically ill ventilated patients managed with an automated weaning system versus no automated weaning system (usual care). Secondary objectives for this review were to determine differences in the duration of ventilation, intensive care unit (ICU) and hospital lengths of stay (LOS), mortality, and adverse events related to early or delayed extubation with the use of automated weaning systems compared to weaning in the absence of an automated weaning system. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 8); MEDLINE (OvidSP) (1948 to September 2013); EMBASE (OvidSP) (1980 to September 2013); CINAHL (EBSCOhost) (1982 to September 2013); and the Latin American and Caribbean Health Sciences Literature (LILACS). Relevant published reviews were sought using the Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessment Database (HTA Database). We also searched the Web of Science Proceedings; conference proceedings; trial registration websites; and reference lists of relevant articles. The original search was run in August 2011, with database auto-alerts up to August 2012. Selection criteria We included randomized controlled trials comparing automated closed loop ventilator applications to non-automated weaning strategies including non-protocolized usual care and protocolized weaning in patients over four weeks of age receiving invasive mechanical ventilation in an ICU. Data collection and analysis Two authors independently extracted study data and assessed risk of bias. We combined data in forest plots using random-effects modelling. Subgroup and sensitivity analyses were conducted according to a priori criteria. Main results We included 21 trials (19 adult, two paediatric) totaling 1676 participants (1628 adults, 48 children) in this updated review. Pooled data from 16 eligible trials reporting weaning duration indicated that automated closed loop systems reduced the geometric mean duration of weaning by 30% (95% confidence interval (CI) 13% to 45%), however heterogeneity was substantial (I2 = 87%, P < 0.00001). Reduced weaning duration was found with mixed or medical ICU populations (42%, 95% CI 10% to 63%) and Smartcare/PS™ (28%, 95% CI 7% to 49%) but not in surgical populations or using other systems. Automated closed loop systems reduced the duration of ventilation (10%, 95% CI 3% to 16%) and ICU LOS (8%, 95% CI 0% to 15%). There was no strong evidence of an effect on mortality rates, hospital LOS, reintubation rates, self-extubation and use of non-invasive ventilation following extubation. Prolonged mechanical ventilation > 21 days and tracheostomy were reduced in favour of automated systems (relative risk (RR) 0.51, 95% CI 0.27 to 0.95 and RR 0.67, 95% CI 0.50 to 0.90 respectively). Overall the quality of the evidence was high with the majority of trials rated as low risk. Authors' conclusions Automated closed loop systems may result in reduced duration of weaning, ventilation and ICU stay. Reductions are more likely to occur in mixed or medical ICU populations. Due to the lack of, or limited, evidence on automated systems other than Smartcare/PS™ and Adaptive Support Ventilation no conclusions can be drawn regarding their influence on these outcomes. Due to substantial heterogeneity in trials there is a need for an adequately powered, high quality, multi-centre randomized controlled trial in adults that excludes 'simple to wean' patients. There is a pressing need for further technological development and research in the paediatric population.
Resumo:
Background: Skeletal muscle wasting and weakness are significant complications of critical illness, associated with the degree of illness severity and periods of reduced mobility during mechanical ventilation. They contribute to the profound physical and functional deficits observed in survivors. These impairments may persist for many years following discharge from the intensive care unit (ICU) and may markedly influence health-related quality of life. Rehabilitation is a key strategy in the recovery of patients following critical illness. Exercise based interventions are aimed at targeting this muscle wasting and weakness. Physical rehabilitation delivered during ICU admission has been systematically evaluated and shown to be beneficial. However its effectiveness when initiated after ICU discharge has yet to be established. Objectives: To assess the effectiveness of exercise rehabilitation programmes, initiated after ICU discharge, on functional exercise capacity and health-related quality of life in adult ICU survivors who have been mechanically ventilated for more than 24 hours. Search methods:We searched the following databases: the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library), OvidSP MEDLINE, Ovid SP EMBASE, and CINAHL via EBSCO host to 15th May 2014. We used a specific search strategy for each database. This included synonyms for ICU and critical illness, exercise training and rehabilitation. We searched the reference lists of included studies and contacted primary authors to obtain further information regarding potentially eligible studies. We also searched major clinical trials registries (Clinical Trials and Current Controlled Trials) and the personal libraries of the review authors. We applied no language or publication restriction. We reran the search in February 2015. We will deal with any studies of interest when we update the review. Selection criteria:We included randomized controlled trials (RCTs), quasi-RCTs, and controlled clinical trials (CCTs) that compared an exercise interventioninitiated after ICU discharge to any other intervention or a control or ‘usual care’ programme in adult (≥18years) survivors ofcritical illness. Data collection and analysis:We used standard methodological procedures expected by The Cochrane Collaboration. Main results:We included six trials (483 adult ICU participants). Exercise-based interventions were delivered on the ward in two studies; both onthe ward and in the community in one study; and in the community in three studies. The duration of the intervention varied according to the length of stay in hospital following ICU discharge (up to a fixed duration of 12 weeks).Risk of bias was variable for all domains across all trials. High risk of bias was evident in all studies for performance bias, although blinding of participants and personnel in therapeutic rehabilitation trials can be pragmatically challenging. Low risk of bias was at least 50% for all other domains across all trials, although high risk of bias was present in one study for random sequence generation (selection bias), incomplete outcome data (attrition bias) and other sources. Risk of bias was unclear for remaining studies across the domains.All six studies measured effect on the primary outcome of functional exercise capacity, although there was wide variability in natureof intervention, outcome measures and associated metrics, and data reporting. Overall quality of the evidence was very low. Only two studies using the same outcome measure for functional exercise capacity, had the potential for pooling of data and assessment of heterogeneity. On statistical advice, this was considered inappropriate to perform this analysis and study findings were therefore qualitatively described. Individually, three studies reported positive results in favour of the intervention. A small benefit (versus. control)was evident in anaerobic threshold in one study (mean difference, MD (95% confidence interval, CI), 1.8 mlO2/kg/min (0.4 to 3.2),P value = 0.02), although this effect was short-term, and in a second study, both incremental (MD 4.7 (95% CI 1.69 to 7.75) Watts, P value = 0.003) and endurance (MD 4.12 (95% CI 0.68 to 7.56) minutes, P value = 0.021) exercise testing demonstrated improvement.Finally self-reported physical function increased significantly following a rehabilitation manual (P value = 0.006). Remaining studies found no effect of the intervention.Similar variability in with regard findings for the primary outcome of health-related quality of life were also evident. Only two studies evaluated this outcome. Following statistical advice, these data again were considered inappropriate for pooling to determine overall effect and assessment of heterogeneity. Qualitative description of findings was therefore undertaken. Individually, neither study reported differences between intervention and control groups for health-related quality of life as a result of the intervention. Overall quality of the evidence was very low.Mortality was reported by all studies, ranging from 0% to 18.8%. Only one non-mortality adverse event was reported across all patients in all studies (a minor musculoskeletal injury). Withdrawals, reported in four studies, ranged from 0% to 26.5% in control groups,and 8.2% to 27.6% in intervention groups. Loss to follow-up, reported in all studies, ranged from 0% to 14% in control groups, and 0% to 12.5% in intervention groups. Authors’ conclusions:We are unable, at this time, to determine an overall effect on functional exercise capacity, or health-related quality of life, of an exercise based intervention initiated after ICU discharge in survivors of critical illness. Meta-analysis of findings was not appropriate. This was due to insufficient study number and data. Individual study findings were inconsistent. Some studies reported a beneficial effect of the intervention on functional exercise capacity, and others not. No effect was reported on health-related quality of life. Methodological rigour was lacking across a number of domains influencing quality of the evidence. There was also wide variability in the characteristics of interventions, outcome measures and associated metrics, and data reporting.If further trials are identified, we may be able to determine the effect of exercise-based interventions following ICU discharge, on functional exercise capacity and health-related quality of life in survivors of critical illness.
Resumo:
Background:
Prolonged mechanical ventilation is associated with a longer intensive care unit (ICU) length of stay and higher mortality. Consequently, methods to improve ventilator weaning processes have been sought. Two recent Cochrane systematic reviews in ICU adult and paediatric populations concluded that protocols can be effective in reducing the duration of mechanical ventilation, but there was significant heterogeneity in study findings. Growing awareness of the benefits of understanding the contextual factors impacting on effectiveness has encouraged the integration of qualitative evidence syntheses with effectiveness reviews, which has delivered important insights into the reasons underpinning (differential) effectiveness of healthcare interventions.
Objectives:
1. To locate, appraise and synthesize qualitative evidence concerning the barriers and facilitators of the use of protocols for weaning critically-ill adults and children from mechanical ventilation;
2. To integrate this synthesis with two Cochrane effectiveness reviews of protocolized weaning to help explain observed heterogeneity by identifying contextual factors that impact on the use of protocols for weaning critically-ill adults and children from mechanical ventilation;
3. To use the integrated body of evidence to suggest the circumstances in which weaning protocols are most likely to be used.
Search methods:
We used a range of search terms identified with the help of the SPICE (Setting, Perspective, Intervention, Comparison, Evaluation) mnemonic. Where available, we used appropriate methodological filters for specific databases. We searched the following databases: Ovid MEDLINE, Embase, OVID, PsycINFO, CINAHL Plus, EBSCOHost, Web of Science Core Collection, ASSIA, IBSS, Sociological Abstracts, ProQuest and LILACS on the 26th February 2015. In addition, we searched: the grey literature; the websites of professional associations for relevant publications; and the reference lists of all publications reviewed. We also contacted authors of the trials included in the effectiveness reviews as well as of studies (potentially) included in the qualitative synthesis, conducted citation searches of the publications reporting these studies, and contacted content experts.
We reran the search on 3rd July 2016 and found three studies, which are awaiting classification.
Selection criteria:
We included qualitative studies that described: the circumstances in which protocols are designed, implemented or used, or both, and the views and experiences of healthcare professionals either involved in the design, implementation or use of weaning protocols or involved in the weaning of critically-ill adults and children from mechanical ventilation not using protocols. We included studies that: reflected on any aspect of the use of protocols, explored contextual factors relevant to the development, implementation or use of weaning protocols, and reported contextual phenomena and outcomes identified as relevant to the effectiveness of protocolized weaning from mechanical ventilation.
Data collection and analysis:
At each stage, two review authors undertook designated tasks, with the results shared amongst the wider team for discussion and final development. We independently reviewed all retrieved titles, abstracts and full papers for inclusion, and independently extracted selected data from included studies. We used the findings of the included studies to develop a new set of analytic themes focused on the barriers and facilitators to the use of protocols, and further refined them to produce a set of summary statements. We used the Confidence in the Evidence from Reviews of Qualitative Research (CERQual) framework to arrive at a final assessment of the overall confidence of the evidence used in the synthesis. We included all studies but undertook two sensitivity analyses to determine how the removal of certain bodies of evidence impacted on the content and confidence of the synthesis. We deployed a logic model to integrate the findings of the qualitative evidence synthesis with those of the Cochrane effectiveness reviews.
Main results:
We included 11 studies in our synthesis, involving 267 participants (one study did not report the number of participants). Five more studies are awaiting classification and will be dealt with when we update the review.
The quality of the evidence was mixed; of the 35 summary statements, we assessed 17 as ‘low’, 13 as ‘moderate’ and five as ‘high’ confidence. Our synthesis produced nine analytical themes, which report potential barriers and facilitators to the use of protocols. The themes are: the need for continual staff training and development; clinical experience as this promotes felt and perceived competence and confidence to wean; the vulnerability of weaning to disparate interprofessional working; an understanding of protocols as militating against a necessary proactivity in clinical practice; perceived nursing scope of practice and professional risk; ICU structure and processes of care; the ability of protocols to act as a prompt for shared care and consistency in weaning practice; maximizing the use of protocols through visibility and ease of implementation; and the ability of protocols to act as a framework for communication with parents.
Authors' conclusions:
There is a clear need for weaning protocols to take account of the social and cultural environment in which they are to be implemented. Irrespective of its inherent strengths, a protocol will not be used if it does not accommodate these complexities. In terms of protocol development, comprehensive interprofessional input will help to ensure broad-based understanding and a sense of ‘ownership’. In terms of implementation, all relevant ICU staff will benefit from general weaning as well as protocol-specific training; not only will this help secure a relevant clinical knowledge base and operational understanding, but will also demonstrate to others that this knowledge and understanding is in place. In order to maximize relevance and acceptability, protocols should be designed with the patient profile and requirements of the target ICU in mind. Predictably, an under-resourced ICU will impact adversely on protocol implementation, as staff will prioritize management of acutely deteriorating and critically-ill patients.
Resumo:
Background
Mechanical ventilation is a life-saving intervention for critically ill newborn infants with respiratory failure admitted to a neonatal intensive care unit (NICU). Ventilating newborn infants can be challenging due to small tidal volumes, high breathing frequencies, and the use of uncuffed endotracheal tubes. Mechanical ventilation has several short-term, as well as long-term complications. To prevent complications, weaning from the ventilator is started as soon as possible. Weaning aims to support the transfer from full mechanical ventilation support to spontaneous breathing activity.
Objectives
To assess the efficacy of protocolized versus non-protocolized ventilator weaning for newborn infants in reducing the duration of invasive mechanical ventilation, the duration of weaning, and shortening the NICU and hospital length of stay. To determine efficacy in predefined subgroups including: gestational age and birth weight; type of protocol; and type of protocol delivery. To establish whether protocolized weaning is safe and clinically effective in reducing the duration of mechanical ventilation without increasing the risk of adverse events.
Search methods
We searched the Cochrane Central Register of Controlled trials (CENTRAL; the Cochrane Library; 2015, Issue 7); MEDLINE In-Process and other Non-Indexed Citations and OVID MEDLINE (1950 to 31 July 2015); CINAHL (1982 to 31 July 2015); EMBASE (1988 to 31 July 2015); and Web of Science (1990 to 15 July 2015). We did not restrict language of publication. We contacted authors of studies with a subgroup of newborn infants in their study, and experts in the field regarding this subject. In addition, we searched abstracts from conference proceedings, theses, dissertations, and reference lists of all identified studies for further relevant studies.
Selection criteria
Randomized, quasi-randomized or cluster-randomized controlled trials that compared protocolized with non-protocolized ventilator weaning practices in newborn infants with a gestational age of 24 weeks or more, who were enrolled in the study before the postnatal age of 28 completed days after the expected date of birth.
Data collection and analysis
Four authors, in pairs, independently reviewed titles and abstracts identified by electronic searches. We retrieved full-text versions of potentially relevant studies.
Main results
Our search yielded 1752 records. We removed duplicates (1062) and irrelevant studies (843). We did not find any randomized, quasi-randomized or cluster-randomized controlled trials conducted on weaning from mechanical ventilation in newborn infants. Two randomized controlled trials met the inclusion criteria on type of study and type of intervention, but only included a proportion of newborns. The study authors could not provide data needed for subgroup analysis; we excluded both studies.
Authors' conclusions
Based on the results of this review, there is no evidence to support or refute the superiority or inferiority of weaning by protocol over non-protocol weaning on duration of invasive mechanical ventilation in newborn infants.
Resumo:
This paper proposes a pose-based algorithm to solve the full SLAM problem for an autonomous underwater vehicle (AUV), navigating in an unknown and possibly unstructured environment. The technique incorporate probabilistic scan matching with range scans gathered from a mechanical scanning imaging sonar (MSIS) and the robot dead-reckoning displacements estimated from a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method utilizes two extended Kalman filters (EKF). The first, estimates the local path travelled by the robot while grabbing the scan as well as its uncertainty and provides position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augment state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach
Resumo:
The self-assembly of a peptide based on a sequence from the amyloid beta peptide but incorporating the non-natural amino acid beta-2-thienylalanine (2-Thi) has been investigated in aqueous and methanol solutions. The peptide AAKLVFF was used as a design motif, replacing the phenylalanine residues (F) with 2-Thi units to yield (2-Thi)(2-Thi)VLKAA. The 2-Thi residues are expected to confer interesting electronic properties due to charge delocalization and pi-stacking. The peptide is shown to form beta-sheet-rich amyloid fibrils with a twisted morphology, in both water and methanol solutions at sufficiently high concentration. The formation of a self-assembling hydrogel is observed at high concentration. Detailed molecular modeling using molecular dynamics methods was performed using NOE constraints provided by 2D-NMR experiments. The conformational and charge properties of 2-Thi were modeled using quantum mechanical methods, and found to be similar to those previously reported for the beta-3-thienylalanine analogue. The molecular dynamics simulations reveal well-defined folded structures (turn-like) in dilute aqueous solution, driven by self-assembly of the hydrophobic aromatic units, with charged lysine groups exposed to water.
Resumo:
A dispersão da amostra de solo é uma etapa fundamental da análise granulométrica, sendo realizada mediante o uso de dispersantes químicos e agitação mecânica. O objetivo deste trabalho foi avaliar a eficiência de mesa agitadora reciprocante de baixa rotação na dispersão mecânica de amostras de solos de diferentes classes texturais. Foram realizadas análises granulométricas em 61 amostras com quatro repetições, empregando o método da pipeta para determinação da fração argila e tamisagem para determinação das frações areia grossa, areia fina e areia total, sendo o silte determinado por diferença. Na avaliação de desempenho, os resultados obtidos com uso da mesa agitadora reciprocante (MAR) foram comparados com dados disponíveis para as mesmas amostras oriundos de relatórios do Ensaio de Proficiência IAC para Laboratórios de Análises de Solos - Prolab/IAC. Análises de acurácia foram realizadas com base nos valores dos intervalos de confiança definidos para cada fração granulométrica componente de cada amostra ensaiada. Indicadores gráficos também foram utilizados na comparação de dados, por meio de dispersão e ajuste linear. A estatística descritiva indicou preponderância de baixa variabilidade em mais de 90 % dos resultados obtidos para as amostras de texturas arenosa, média e argilosa e em 68 % dos obtidos para as amostras de textura muito argilosa, indicando boa repetibilidade dos resultados obtidos com a MAR. Média variabilidade foi mais frequentemente associada à fração silte, seguida da fração areia fina. Os resultados das análises de sensibilidade indicam acurácia de 100 % nas três frações granulométricas - areia total, silte e argila - para todas as amostras analisadas pertencentes às classes texturais muito argilosa, argilosa e média. Para as nove amostras de textura arenosa, a acurácia média foi de 85,2 %, e os maiores desvios ocorreram em relação à fração silte. Nas aproximações lineares, coeficientes de correlação igual (silte) ou superiores (areia total e argila) a 0,93, bem como diferenças menores do que 0,16 entre os coeficientes angulares das retas e o valor unitário, indicam alta correlação entre os resultados de referência (Prolab/IAC) e os obtidos nos ensaios com a MAR. Conclui-se pelo desempenho satisfatório da mesa agitadora reciprocante de baixa rotação para dispersão mecânica de amostras de solo de diferentes classes texturais para fins de análise granulométrica, permitindo recomendar o uso alternativo do equipamento quando se emprega agitação lenta. As vantagens do uso do equipamento nacional incluem o baixo custo, a possibilidade de análise simultânea de grande número de amostras e o uso de frascos comuns, de vidro ou de plástico, baratos e de fácil reposição.
Resumo:
Objective. To evaluate the degree of conversion (DC), flexural strength (FS) and Knoop microhardness (KHN) of direct and indirect composite resins polymerized with different curing systems. Materials and methods. Specimens of direct (Z250, 3M/Espe) and indirect (Sinfony, 3M/Espe) restorative materials were made and polymerized using two light curing units: XL2500 (3M/Espe) and Visio system (3M/Espe). Absorption spectra of both composites were obtained on a FTIR spectrometer in order to calculate the DC. FS was evaluated in a universal testing machine and surface microhardness was performed in a microhardness tester (50gf/15s). DC, FS and KHN data were submitted to two-way ANOVA and Tukey's test (α = 0.05). Results. Z250 showed higher DC, FS and KHN compared with Sinfony when the polymerization was carried out with XL2500 (p < 0.05). However, there is no statistical difference in DC between the materials when Visio was used (p > 0.05). Visio showed higher DC and KHN for Z250 and Sinfony than the values obtained using XL2500 light curing (p < 0.05). For FS, no significant difference between curing units was found (p > 0.05). Conclusion. Even though the Visio system could increase DC and KHN for some direct and indirect composites, compared with the conventional halogen curing unit, a high number of monomers did not undergo conversion during the polymerization. © 2013 Informa Healthcare.
Resumo:
Purpose: This study aimed to evaluate the survival probability of four narrow-diameter implant systems when subjected to fatigue loading. Materials and Methods: Seventy-two narrow-diameter implants to be restored with single-unit crowns were divided into four groups (n = 18): Astra Tech (3.5-mm diameter), with a standard connection (ASC); BioHorizon (3.4-mm diameter), with a standard connection (BSC); Intra-Lock (3.4-mm diameter), with a standard multilobular connection (ISC); and Intra-Lock (3.4-diameter), with a modified square connection (IMC). The corresponding abutments were screwed onto the implants, and standardized metal crowns (maxillary central incisors) were cemented and subjected to step-stress accelerated life testing in water. Use-level probability Weibull curves and reliability for 100,000 cycles at 150 and 200 N (90% two-sided confidence intervals) were calculated. Polarized light and scanning electron microscopes were used to access the failure modes. Results: The calculated survival probability for 100,000 cycles at 150 N was approximately 93% in group ASC, 98% in group BSC, 94% in group ISC, and 99% in group IMC. At 200 N, the survival rate was estimated to be approximately < 0.1% for ASC, 77% for BSC, 34% for ISC, and 93% for IMC. Abutment screw fracture was the main failure mode for all groups. Conclusions: Although the probability of survival was not significantly different among systems at a load of 150 N, a significant decrease was observed at 200 N for all groups except IMC.
Resumo:
Introduction: Prognostic factors are used in the Intensive Care Unit (ICU) to predict morbidity and mortality , especially in patients on mechanical ventilation (MV ) . Training protocols are used in MV patients with the aim of promoting the success of the weaning process. Objective: To assess which variables determine the outcome of patients undergoing mechanical ventilation and compare the effects of two protocols for weaning. Method: Patients under MV for more than 48 hours had collected the following information: sex, age , ideal weight, height , Acute Physiology and Chronic Health Evaluation (APACHE II), risk of mortality, Glasgow Coma Scale (GCS) and index Quick and perfunctory (IRRS) breathing. Patients with unsuccessful weaning performed one of weaning protocols: Progressive T - tube or tube - T + Threshold ® IMT. Patients were compared for outcome (death or non- death in the ICU ) and the protocols through the t test or Mann-Whitney test was considered significant when P <0.05. Results: Of 128 patients evaluated 56.25% were men, the mean age was 60.05 ± 17.85 years and 40.62 % patients died, and they had higher APACHE II scores, mortality risk, time VM and IRRS GCS and the lower value (p<0.05). The age, initial and final maximal inspiratory pressure, time of weaning and duration of MV was similar between protocols. Conclusion: The study suggests that the GCS, APACHE II risk of mortality, length of MV and IRRS variables determined the evolution of MV patients in this sample. Not found differences in the variables studied when comparing the two methods of weaning.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)