Exercise rehabilitation following intensive care unit discharge for recovery from critical illness


Autoria(s): Connolly, Bronwen; Salisbury, Lisa; O'Neill, Brenda; Geneen, Louise; Douiri, Abdel; Grocott, Michael P. W.; Hart, Nicholas; Walsh, Timothy S.; Blackwood, Bronagh
Data(s)

2015

Resumo

Background: Skeletal muscle wasting and weakness are significant complications of critical illness, associated with the degree of illness severity and periods of reduced mobility during mechanical ventilation. They contribute to the profound physical and functional deficits observed in survivors. These impairments may persist for many years following discharge from the intensive care unit (ICU) and may markedly influence health-related quality of life. Rehabilitation is a key strategy in the recovery of patients following critical illness. Exercise based interventions are aimed at targeting this muscle wasting and weakness. Physical rehabilitation delivered during ICU admission has been systematically evaluated and shown to be beneficial. However its effectiveness when initiated after ICU discharge has yet to be established. Objectives: To assess the effectiveness of exercise rehabilitation programmes, initiated after ICU discharge, on functional exercise capacity and health-related quality of life in adult ICU survivors who have been mechanically ventilated for more than 24 hours. Search methods:We searched the following databases: the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library), OvidSP MEDLINE, Ovid SP EMBASE, and CINAHL via EBSCO host to 15th May 2014. We used a specific search strategy for each database. This included synonyms for ICU and critical illness, exercise training and rehabilitation. We searched the reference lists of included studies and contacted primary authors to obtain further information regarding potentially eligible studies. We also searched major clinical trials registries (Clinical Trials and Current Controlled Trials) and the personal libraries of the review authors. We applied no language or publication restriction. We reran the search in February 2015. We will deal with any studies of interest when we update the review.  Selection criteria:We included randomized controlled trials (RCTs), quasi-RCTs, and controlled clinical trials (CCTs) that compared an exercise interventioninitiated after ICU discharge to any other intervention or a control or ‘usual care’ programme in adult (≥18years) survivors ofcritical illness. Data collection and analysis:We used standard methodological procedures expected by The Cochrane Collaboration. Main results:We included six trials (483 adult ICU participants). Exercise-based interventions were delivered on the ward in two studies; both onthe ward and in the community in one study; and in the community in three studies. The duration of the intervention varied according to the length of stay in hospital following ICU discharge (up to a fixed duration of 12 weeks).Risk of bias was variable for all domains across all trials. High risk of bias was evident in all studies for performance bias, although blinding of participants and personnel in therapeutic rehabilitation trials can be pragmatically challenging. Low risk of bias was at least 50% for all other domains across all trials, although high risk of bias was present in one study for random sequence generation (selection bias), incomplete outcome data (attrition bias) and other sources. Risk of bias was unclear for remaining studies across the domains.All six studies measured effect on the primary outcome of functional exercise capacity, although there was wide variability in natureof intervention, outcome measures and associated metrics, and data reporting. Overall quality of the evidence was very low. Only two studies using the same outcome measure for functional exercise capacity, had the potential for pooling of data and assessment of heterogeneity. On statistical advice, this was considered inappropriate to perform this analysis and study findings were therefore qualitatively described. Individually, three studies reported positive results in favour of the intervention. A small benefit (versus. control)was evident in anaerobic threshold in one study (mean difference, MD (95% confidence interval, CI), 1.8 mlO2/kg/min (0.4 to 3.2),P value = 0.02), although this effect was short-term, and in a second study, both incremental (MD 4.7 (95% CI 1.69 to 7.75) Watts, P value = 0.003) and endurance (MD 4.12 (95% CI 0.68 to 7.56) minutes, P value = 0.021) exercise testing demonstrated improvement.Finally self-reported physical function increased significantly following a rehabilitation manual (P value = 0.006). Remaining studies found no effect of the intervention.Similar variability in with regard findings for the primary outcome of health-related quality of life were also evident. Only two studies evaluated this outcome. Following statistical advice, these data again were considered inappropriate for pooling to determine overall effect and assessment of heterogeneity. Qualitative description of findings was therefore undertaken. Individually, neither study reported differences between intervention and control groups for health-related quality of life as a result of the intervention. Overall quality of the evidence was very low.Mortality was reported by all studies, ranging from 0% to 18.8%. Only one non-mortality adverse event was reported across all patients in all studies (a minor musculoskeletal injury). Withdrawals, reported in four studies, ranged from 0% to 26.5% in control groups,and 8.2% to 27.6% in intervention groups. Loss to follow-up, reported in all studies, ranged from 0% to 14% in control groups, and 0% to 12.5% in intervention groups. Authors’ conclusions:We are unable, at this time, to determine an overall effect on functional exercise capacity, or health-related quality of life, of an exercise based intervention initiated after ICU discharge in survivors of critical illness. Meta-analysis of findings was not appropriate. This was due to insufficient study number and data. Individual study findings were inconsistent. Some studies reported a beneficial effect of the intervention on functional exercise capacity, and others not. No effect was reported on health-related quality of life. Methodological rigour was lacking across a number of domains influencing quality of the evidence. There was also wide variability in the characteristics of interventions, outcome measures and associated metrics, and data reporting.If further trials are identified, we may be able to determine the effect of exercise-based interventions following ICU discharge, on functional exercise capacity and health-related quality of life in survivors of critical illness.

Identificador

http://pure.qub.ac.uk/portal/en/publications/exercise-rehabilitation-following-intensive-care-unit-discharge-for-recovery-from-critical-illness(9252fa65-b257-4e59-b98c-f4894915efd1).html

http://dx.doi.org/10.1002/14651858.CD008632.pub2

http://pure.qub.ac.uk/ws/files/16065989/exercise.pdf

Idioma(s)

eng

Direitos

info:eu-repo/semantics/openAccess

Fonte

Connolly , B , Salisbury , L , O'Neill , B , Geneen , L , Douiri , A , Grocott , M P W , Hart , N , Walsh , T S & Blackwood , B 2015 , ' Exercise rehabilitation following intensive care unit discharge for recovery from critical illness ' Cochrane database of systematic reviews (Online) , no. 6 , pp. 1-64 . DOI: 10.1002/14651858.CD008632.pub2

Tipo

article

Formato

application/pdf