973 resultados para MEAN-MOTION RESONANCE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the stability regions and families of periodic orbits of two planets locked in a co-orbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L(4) and L(5), we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (delta lambda, delta pi) = (+/- 60 degrees, -/+ 120 degrees), where delta lambda is the difference in mean longitudes and delta pi is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as similar to 0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Myocardial perfusion quantification by means of Contrast-Enhanced Cardiac Magnetic Resonance images relies on time consuming frame-by-frame manual tracing of regions of interest. In this Thesis, a novel automated technique for myocardial segmentation and non-rigid registration as a basis for perfusion quantification is presented. The proposed technique is based on three steps: reference frame selection, myocardial segmentation and non-rigid registration. In the first step, the reference frame in which both endo- and epicardial segmentation will be performed is chosen. Endocardial segmentation is achieved by means of a statistical region-based level-set technique followed by a curvature-based regularization motion. Epicardial segmentation is achieved by means of an edge-based level-set technique followed again by a regularization motion. To take into account the changes in position, size and shape of myocardium throughout the sequence due to out of plane respiratory motion, a non-rigid registration algorithm is required. The proposed non-rigid registration scheme consists in a novel multiscale extension of the normalized cross-correlation algorithm in combination with level-set methods. The myocardium is then divided into standard segments. Contrast enhancement curves are computed measuring the mean pixel intensity of each segment over time, and perfusion indices are extracted from each curve. The overall approach has been tested on synthetic and real datasets. For validation purposes, the sequences have been manually traced by an experienced interpreter, and contrast enhancement curves as well as perfusion indices have been computed. Comparisons between automatically extracted and manually obtained contours and enhancement curves showed high inter-technique agreement. Comparisons of perfusion indices computed using both approaches against quantitative coronary angiography and visual interpretation demonstrated that the two technique have similar diagnostic accuracy. In conclusion, the proposed technique allows fast, automated and accurate measurement of intra-myocardial contrast dynamics, and may thus address the strong clinical need for quantitative evaluation of myocardial perfusion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In adults with congenital heart disease and a systemic right ventricle, subaortic ventricular systolic dysfunction is common. Echocardiographic assessment of systolic right ventricular (RV) function in these patients is important but challenging. The aim of the present study was to assess the reliability of conventional echocardiographic RV functional parameters to quantify the systolic performance of a subaortic right ventricle. We compared 56 contemporary echocardiograms and cardiac magnetic resonance studies in 37 adults, aged 26.9 ± 7.4 years, with complete transposition and a subaortic right ventricle. The fractional area change (FAC), lateral tricuspid annular plane systolic excursion, lateral RV systolic motion velocities by tissue Doppler, RV myocardial performance index, and the rate of systolic RV pressure increase (dp/dt) measured across the tricuspid regurgitant jet were assessed by echocardiography and correlated with the cardiac magnetic resonance-derived RV ejection fraction (EF). The mean RVEF was 48.0 ± 7.8%. FAC (r(2) = 0.206, p = 0.001) and dp/dt (r(2) = 0.173, p = 0.009) significantly correlated with RVEF, and the other nongeometric echocardiographic parameters failed to show a significant correlation with RVEF by linear regression analysis. FAC <33% and dp/dt <1,000 mm Hg/s identified a RVEF of <50% with a sensitivity of 77% and 69% and a specificity of 58% and 87%, respectively. In conclusion, in patients with a systemic right ventricle, routine nongeometric echocardiographic parameters of RV function correlated weakly with cardiac magnetic resonance-derived EF. RV FAC and the measurement of the rate of systolic RV pressure increase (dp/dt) should be preferentially used to assess systemic systolic function in adult patients with a subaortic right ventricle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this prospective study was to compare the intraindividual aperistaltic effect of 40 mg hyoscine N-butylbromide (HBB/Buscopan) with that of 1 mg glucagon on small bowel motility by using magnetic resonance imaging (MRI). Ten healthy volunteers underwent two separate 1.5-T MRI studies (HBB/glucagon) after a standardized oral preparation with an aqueous solution of Gd-DOTA and ispaghula (Metamucil). A 2D T1-w GRE sequence was acquired (TR 2.7 ms/TE 1.3 ms, temporal resolution 0.25 s) before and after intravenous (i.v.) drug administration and motility was followed over 1 h. On the resulting images the cross-sectional luminal diameters were assessed and plotted over time. Baseline motility frequency, onset of aperistalsis, duration of arrest, reappearance of motility and return to normal motility were analysed. Significant differences regarding reliability and duration of aperistalsis were observed. In the HBB group aperistalsis lasted a mean of 6.8 +/- 5.3 min compared with 18.3 +/- 7 min after glucagon (p < 0.0001). In 50% of cases HBB did not accomplish aperistalsis, whereas glucagon always succeeded (p = 0.05). There were no significant differences in terms of baseline and end frequencies for the onset of aperistalsis (22.2 +/- 37.5 s HBB/13.4 +/- 9.2 s glucagon, p = 0.1), nor for the return to normal motility. Arrest of small bowel motion is achieved more reliably and lasts significantly longer after i.v. administration of 1 mg glucagon compared with 40 mg HBB.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE To systematically evaluate the dependence of intravoxel-incoherent-motion (IVIM) parameters on the b-value threshold separating the perfusion and diffusion compartment, and to implement and test an algorithm for the standardized computation of this threshold. METHODS Diffusion weighted images of the upper abdomen were acquired at 3 Tesla in eleven healthy male volunteers with 10 different b-values and in two healthy male volunteers with 16 different b-values. Region-of-interest IVIM analysis was applied to the abdominal organs and skeletal muscle with a systematic increase of the b-value threshold for computing pseudodiffusion D*, perfusion fraction Fp , diffusion coefficient D, and the sum of squared residuals to the bi-exponential IVIM-fit. RESULTS IVIM parameters strongly depended on the choice of the b-value threshold. The proposed algorithm successfully provided optimal b-value thresholds with the smallest residuals for all evaluated organs [s/mm2]: e.g., right liver lobe 20, spleen 20, right renal cortex 150, skeletal muscle 150. Mean D* [10(-3) mm(2) /s], Fp [%], and D [10(-3) mm(2) /s] values (±standard deviation) were: right liver lobe, 88.7 ± 42.5, 22.6 ± 7.4, 0.73 ± 0.12; right renal cortex: 11.5 ± 1.8, 18.3 ± 2.9, 1.68 ± 0.05; spleen: 41.9 ± 57.9, 8.2 ± 3.4, 0.69 ± 0.07; skeletal muscle: 21.7 ± 19.0; 7.4 ± 3.0; 1.36 ± 0.04. CONCLUSION IVIM parameters strongly depend upon the choice of the b-value threshold used for computation. The proposed algorithm may be used as a robust approach for IVIM analysis without organ-specific adaptation. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES We sought to determine whether the transmural extent of scar (TES) explains discordances between dobutamine echocardiography (DbE) and thallium single-photon emission computed tomography (Tl-SPECT) in the detection of viable myocardium (VM). BACKGROUND Discrepancies between DbE and Tl-SPECT are often attributed to differences between contractile reserve and membrane integrity, but may also reflect a disproportionate influence of nontransmural scar on thickening at DbE. METHODS Sixty patients (age 62 +/- 12 years; 10 women and 50 men) with postinfarction left ventricular dysfunction underwent standard rest-late redistribution Tl-SPECT and DbE. Viable myocardium was identified when dysfunctional segments showed Tl activity >60% on the late-redistribution image or by low-dose augmentation at DbE. Contrast-enhanced magnetic resonance imaging (ceMRI) was used to divide TES into five groups: 0%, 75% of the wall thickness replaced by scar. RESULTS As TES increased, both the mean Tl uptake and change in wall motion score decreased significantly (both p < 0.001). However, the presence of subendocardial scar was insufficient to prevent thickening; >50% of segments still showed contractile function with TES of 25% to 75%, although residual function was uncommon with TES >75%. The relationship of both tests to increasing TES was similar, but Tl-SPECT identified VM more frequently than DbE in all groups. Among segments without scar or with small amounts of scar (50% were viable by SPECT. CONCLUSIONS Both contractile reserve and perfusion are sensitive to the extent of scar. However, contractile reserve may be impaired in the face of no or minor scar, and thickening may still occur with extensive scar. (C) 2004 by the American College of Cardiology Foundation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose phase diagrams for an imbalanced (unequal number of atoms or Fermi surface in two pairing hyperfine states) gas of atomic fermions near a broad Feshbach resonance using mean-field theory. Particularly, in the plane of interaction and polarization we determine the region for a mixed phase composed of normal and superfluid components. We compare our prediction of phase boundaries with the recent measurement and find a good qualitative agreement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two-dimensional (2-D) strain (epsilon(2-D)) on the basis of speckle tracking is a new technique for strain measurement. This study sought to validate epsilon(2-D) and tissue velocity imaging (TVI)based strain (epsilon(TVI)) with tagged harmonic-phase (HARP) magnetic resonance imaging (MRI). Thirty patients (mean age. 62 +/- 11 years) with known or suspected ischemic heart disease were evaluated. Wall motion (wall motion score index 1.55 +/- 0.46) was assessed by an expert observer. Three apical images were obtained for longitudinal strain (16 segments) and 3 short-axis images for radial and circumferential strain (18 segments). Radial epsilon(TVI) was obtained in the posterior wall. HARP MRI was used to measure principal strain, expressed as maximal length change in each direction. Values for epsilon(2-D), epsilon(TVI), and HARP MRI were comparable for all 3 strain directions and were reduced in dysfunctional segments. The mean difference and correlation between longitudinal epsilon(2-D) and HARP MRI (2.1 +/- 5.5%, r = 0.51, p < 0.001) were similar to those between longitudinal epsilon(TVI), and HARP MRI (1.1 +/- 6.7%, r = 0.40, p < 0.001). The mean difference and correlation were more favorable between radial epsilon(2-D) and HARP MRI (0.4 +/- 10.2%, r = 0.60, p < 0.001) than between radial epsilon(TVI), and HARP MRI (3.4 +/- 10.5%, r = 0.47, p < 0.001). For circumferential strain, the mean difference and correlation between epsilon(2-D) and HARP MRI were 0.7 +/- 5.4% and r = 0.51 (p < 0.001), respectively. In conclusion, the modest correlations of echocardiographic and HARP MRI strain reflect the technical challenges of the 2 techniques. Nonetheless, epsilon(2-D) provides a reliable tool to quantify regional function, with radial measurements being more accurate and feasible than with TVI. Unlike epsilon(TVI), epsilon(2-D) provides circumferential measurements. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: left ventricular wall motion on 2d echo (2de) is usually scored visually. we sought to examine the determinants of visually assessed wall motion scoring on 2de by comparison with myocardial thickening quantified on MRI. Methods: using a 16 segment model, we studied 287 segments in 30 patients aged 61+/ -11 years (6 female), with ischaemic LV dysfunction (defined by at least 2 segments dysfunctional on 2de). 2de was performed in 5 views and wall motion scores (WMS) assigned: 1 (normal) 103 segments, 2 (hypokinetic) 93 segments, 3 (akinetic) 87 segments. MRI was used to measure end systolic wall thickness (ESWT), end diastolic wall thickness (EDWT) and percentage systolic wall thickening (SWT%) in the plane of the 2de and to assess WMS in the same planes visually. No patient had a clinical ischemic event between the tests. Results: visual assessment of wall motion by 2de and MRI showed moderate agreement (kappa = 0.425). Resting 2de wall motion correlated significantly (p

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background - When a moving stimulus and a briefly flashed static stimulus are physically aligned in space the static stimulus is perceived as lagging behind the moving stimulus. This vastly replicated phenomenon is known as the Flash-Lag Effect (FLE). For the first time we employed biological motion as the moving stimulus, which is important for two reasons. Firstly, biological motion is processed by visual as well as somatosensory brain areas, which makes it a prime candidate for elucidating the interplay between the two systems with respect to the FLE. Secondly, discussions about the mechanisms of the FLE tend to recur to evolutionary arguments, while most studies employ highly artificial stimuli with constant velocities. Methodology/Principal Finding - Since biological motion is ecologically valid it follows complex patterns with changing velocity. We therefore compared biological to symbolic motion with the same acceleration profile. Our results with 16 observers revealed a qualitatively different pattern for biological compared to symbolic motion and this pattern was predicted by the characteristics of motor resonance: The amount of anticipatory processing of perceived actions based on the induced perspective and agency modulated the FLE. Conclusions/Significance - Our study provides first evidence for an FLE with non-linear motion in general and with biological motion in particular. Our results suggest that predictive coding within the sensorimotor system alone cannot explain the FLE. Our findings are compatible with visual prediction (Nijhawan, 2008) which assumes that extrapolated motion representations within the visual system generate the FLE. These representations are modulated by sudden visual input (e.g. offset signals) or by input from other systems (e.g. sensorimotor) that can boost or attenuate overshooting representations in accordance with biased neural competition (Desimone & Duncan, 1995).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While spatial determinants of emmetropization have been examined extensively in animal models and spatial processing of human myopes has also been studied, there have been few studies investigating temporal aspects of emmetropization and temporal processing in human myopia. The influence of temporal light modulation on eye growth and refractive compensation has been observed in animal models and there is evidence of temporal visual processing deficits in individuals with high myopia or other pathologies. Given this, the aims of this work were to examine the relationships between myopia (i.e. degree of myopia and progression status) and temporal visual performance and to consider any temporal processing deficits in terms of the parallel retinocortical pathways. Three psychophysical studies investigating temporal processing performance were conducted in young adult myopes and non-myopes: (1) backward visual masking, (2) dot motion perception and (3) phantom contour. For each experiment there were approximately 30 young emmetropes, 30 low myopes (myopia less than 5 D) and 30 high myopes (5 to 12 D). In the backward visual masking experiment, myopes were also classified according to their progression status (30 stable myopes and 30 progressing myopes). The first study was based on the observation that the visibility of a target is reduced by a second target, termed the mask, presented quickly after the first target. Myopes were more affected by the mask when the task was biased towards the magnocellular pathway; myopes had a 25% mean reduction in performance compared with emmetropes. However, there was no difference in the effect of the mask when the task was biased towards the parvocellular system. For all test conditions, there was no significant correlation between backward visual masking task performance and either the degree of myopia or myopia progression status. The dot motion perception study measured detection thresholds for the minimum displacement of moving dots, the maximum displacement of moving dots and degree of motion coherence required to correctly determine the direction of motion. The visual processing of these tasks is dominated by the magnocellular pathway. Compared with emmetropes, high myopes had reduced ability to detect the minimum displacement of moving dots for stimuli presented at the fovea (20% higher mean threshold) and possibly at the inferior nasal retina. The minimum displacement threshold was significantly and positively correlated to myopia magnitude and axial length, and significantly and negatively correlated with retinal thickness for the inferior nasal retina. The performance of emmetropes and myopes for all the other dot motion perception tasks were similar. In the phantom contour study, the highest temporal frequency of the flickering phantom pattern at which the contour was visible was determined. Myopes had significantly lower flicker detection limits (21.8 ± 7.1 Hz) than emmetropes (25.6 ± 8.8 Hz) for tasks biased towards the magnocellular pathway for both high (99%) and low (5%) contrast stimuli. There was no difference in flicker limits for a phantom contour task biased towards the parvocellular pathway. For all phantom contour tasks, there was no significant correlation between flicker detection thresholds and magnitude of myopia. Of the psychophysical temporal tasks studied here those primarily involving processing by the magnocellular pathway revealed differences in performance of the refractive error groups. While there are a number of interpretations for this data, this suggests that there may be a temporal processing deficit in some myopes that is selective for the magnocellular system. The minimum displacement dot motion perception task appears the most sensitive test, of those studied, for investigating changes in visual temporal processing in myopia. Data from the visual masking and phantom contour tasks suggest that the alterations to temporal processing occur at an early stage of myopia development. In addition, the link between increased minimum displacement threshold and decreasing retinal thickness suggests that there is a retinal component to the observed modifications in temporal processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined whether the conspicuity of road workers at night can be enhanced by distributing retroreflective strips across the body to present a pattern of biological motion (biomotion). Twenty visually normal drivers (mean age = 40.3 years) participated in an experiment conducted at two open-road work sites (one suburban and one freeway) at night-time. At each site, four road workers walked in place wearing a standard road worker night vest either (a) alone, (b) with additional retroreflective strips on thighs, (c) with additional retroreflective strips on ankles and knees, or (d) with additional retroreflective strips on eight moveable joints (full biomotion). Participants, seated in stationary vehicles at three different distances (80 m, 160 m, 240 m), rated the relative conspicuity of the four road workers. Road worker conspicuity was maximized by the full biomotion configuration at all distances and at both sites. The addition of ankle and knee markings also provided significant benefits relative to the standard vest alone. The effects of clothing configuration were more evident at the freeway site and at shorter distances. Overall, the full biomotion configuration was ranked to be most conspicuous and the vest least conspicuous. These data provide the first evidence that biomotion effectively enhances conspicuity of road workers at open-road work sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY OBJECTIVES: To determine whether cerebral metabolite changes may underlie abnormalities of neurocognitive function and respiratory control in OSA. DESIGN: Observational, before and after CPAP treatment. SETTING: Two tertiary hospital research institutes. PARTICIPANTS: 30 untreated severe OSA patients, and 25 age-matched healthy controls, all males free of comorbidities, and all having had detailed structural brain analysis using voxel-based morphometry (VBM). MEASUREMENTS AND RESULTS: Single voxel bilateral hippocampal and brainstem, and multivoxel frontal metabolite concentrations were measured using magnetic resonance spectroscopy (MRS) in a high resolution (3T) scanner. Subjects also completed a battery of neurocognitive tests. Patients had repeat testing after 6 months of CPAP. There were significant differences at baseline in frontal N-acetylaspartate/choline (NAA/Cho) ratios (patients [mean (SD)] 4.56 [0.41], controls 4.92 [0.44], P = 0.001), and in hippocampal choline/creatine (Cho/Cr) ratios (0.38 [0.04] vs 0.41 [0.04], P = 0.006), (both ANCOVA, with age and premorbid IQ as covariates). No longitudinal changes were seen with treatment (n = 27, paired t tests), however the hippocampal differences were no longer significant at 6 months, and frontal NAA/Cr ratios were now also significantly different (patients 1.55 [0.13] vs control 1.65 [0.18] P = 0.01). No significant correlations were found between spectroscopy results and neurocognitive test results, but significant negative correlations were seen between arousal index and frontal NAA/Cho (r = -0.39, corrected P = 0.033) and between % total sleep time at SpO(2) < 90% and hippocampal Cho/Cr (r = -0.40, corrected P = 0.01). CONCLUSIONS: OSA patients have brain metabolite changes detected by MRS, suggestive of decreased frontal lobe neuronal viability and integrity, and decreased hippocampal membrane turnover. These regions have previously been shown to have no gross structural lesions using VBM. Little change was seen with treatment with CPAP for 6 months. No correlation of metabolite concentrations was seen with results on neurocognitive tests, but there were significant negative correlations with OSA severity as measured by severity of nocturnal hypoxemia. CITATION: O'Donoghue FJ; Wellard RM; Rochford PD; Dawson A; Barnes M; Ruehland WR; Jackson ML; Howard ME; Pierce RJ; Jackson GD. Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accuracy of marker placement on palpable surface anatomical landmarks is an important consideration in biomechanics. Although marker placement reliability has been studied in some depth, it remains unclear whether or not the markers are accurately positioned over the intended landmark in order to define the static position and orientation of the segment. A novel method using commonly available X-ray imaging was developed to identify the accuracy of markers placed on the shoe surface by palpating landmarks through the shoe. An anterior–posterior and lateral–medial X-ray was taken on 24 participants with a newly developed marker set applied to both the skin and shoe. The vector magnitude of both skin- and shoe-mounted markers from the anatomical landmark was calculated, as well as the mean marker offset between skin- and shoe-mounted markers. The accuracy of placing markers on the shoe relative to the skin-mounted markers, accounting for shoe thickness, was less than 5mm for all markers studied. Further, when using the developed guidelines provided in this study, the method was deemed reliable (Intra-rater ICCs¼0.50–0.92). In conclusion, the method proposed here can reliably assess marker placement accuracy on the shoe surface relative to chosen anatomical landmarks beneath the skin.