238 resultados para MATHEMATICIANS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Esta tese aborda a discussão a respeito do raciocínio matemático manifestado no saber/ fazer dos artesãos ceramistas do Distrito Municipal de Icoaraci (Belém/ PA), visando o entendimento cognitivo e cultural desta prática, para abstrair contribuições à educação matemática – área de conhecimento na qual se inscreve, especialmente no âmbito da educação matemática. Trabalhado essa última, a tese analisa a realidade dos sujeitos mediante a Teoria dos Campos Conceituais, do educador matemático Gérard Vergnaud, que desenvolve estudos na linha construtivista, do psicólogo da educação Jean Piaget, possibilitando abordar na prática cotidiana do artesão, seus Campos Conceituais, a possibilidade ou não da existência de teoremas e conceitos-em-ato, fato esse que irá constatar ou não a essência ou „matematicidade‟ dos estudos educacionais matemáticos trabalhados por etnomatemáticos, pedagogos, especialistas de modelagem matemática, sociólogos e arqueólogos matemáticos. A epistemologia da educação matemática, disciplina filosófica, surge norteando esse entendimento sobre o raciocínio matemático, através da matemática do sensível, que acha origens na antiguidade grega, através dos ideários pitagórico, platônico e aristotélico, estendendo essa visão à matemática do mundo presente. Assim, a tese procura explicitar a manifestação de um raciocínio matemático por parte do artesão, que no seu fazer predominantemente não conhece e/ ou não utiliza a matemática acadêmica ou formal, como comprovado em outros estudos. Essa presença ou não de entendimentos matemáticos será constatada através de abordagem etnográfica e qualitativa, sob o enfoque fenomenológico, utilizando técnicas de observação, anotações de campo, inventário cultural e entrevistas, no intuito de analisar as representações existentes em suas obras e o fazer/ pensar manifestados nessa produção.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
In the mid-nineteenth century, french mathematicians Briot and Bouquet have proposed an intriguing graphical method for solving cubic equations "depressed" - the third degree equations that do not have the quadratic term. The proposal is simple geometric construction, though based on an ingenious algebra. We propose here the verification and testing graphical method through an instructional sequence using the software GeoGebra also present the ingenious algebraic development that resulted in this graphic method for determination of real roots of a cubic equation of the type x³ + px + q = 0 where p and q are real numbers. The method states that these solutions are summarized in the abscissas of the points of intersection of the circumference containing the origin and the center C (-q/2, 1-p/2) with the parable y = x².
Resumo:
During a long time, origami was associated with decoration and craft production of ornaments and figures. However, in the end of 20th century, it began to be studied by mathematicians who were looking for interrelationships between this art and science. Through disciplines like geometry, trigonometry, calculation and linear algebra, they generated a set of axioms and theorems that became possible specific conversion of origami in computational geometry and the development of several softwares. Thus, origami began to be applied in engineering and design studies of innovative product and the term “origamics” was created to demonstrate its interdisciplinary nature. In this article will be presented some works exploring the constructive principles of origami to contribute with the diffusion of origamics. In this way more professionals will be able to understand the scientific and technological potential of this art.
Resumo:
Taking referential theoretical conceptions of mathematical knowledge present in some of the main mathematics philosophical currents and considering that the teacher´s practice is influenced by his conception of mathematical knowledge, this research aims to understand the conceptions of mathematical knowledge and its teaching and learning teaching of future mathematicians. It follows a qualitative approach (case study) in which the data were collected by semi-structured interviews and document analysis. This investigation has pointed out that Mathematics together with Mathematics Teaching (or part of this: on the didactic and pedagogical knowledge of how to teach) could be important to formation of the future mathematician, who will probably teach in a college or university.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Matita (that means pencil in Italian) is a new interactive theorem prover under development at the University of Bologna. When compared with state-of-the-art proof assistants, Matita presents both traditional and innovative aspects. The underlying calculus of the system, namely the Calculus of (Co)Inductive Constructions (CIC for short), is well-known and is used as the basis of another mainstream proof assistant—Coq—with which Matita is to some extent compatible. In the same spirit of several other systems, proof authoring is conducted by the user as a goal directed proof search, using a script for storing textual commands for the system. In the tradition of LCF, the proof language of Matita is procedural and relies on tactic and tacticals to proceed toward proof completion. The interaction paradigm offered to the user is based on the script management technique at the basis of the popularity of the Proof General generic interface for interactive theorem provers: while editing a script the user can move forth the execution point to deliver commands to the system, or back to retract (or “undo”) past commands. Matita has been developed from scratch in the past 8 years by several members of the Helm research group, this thesis author is one of such members. Matita is now a full-fledged proof assistant with a library of about 1.000 concepts. Several innovative solutions spun-off from this development effort. This thesis is about the design and implementation of some of those solutions, in particular those relevant for the topic of user interaction with theorem provers, and of which this thesis author was a major contributor. Joint work with other members of the research group is pointed out where needed. The main topics discussed in this thesis are briefly summarized below. Disambiguation. Most activities connected with interactive proving require the user to input mathematical formulae. Being mathematical notation ambiguous, parsing formulae typeset as mathematicians like to write down on paper is a challenging task; a challenge neglected by several theorem provers which usually prefer to fix an unambiguous input syntax. Exploiting features of the underlying calculus, Matita offers an efficient disambiguation engine which permit to type formulae in the familiar mathematical notation. Step-by-step tacticals. Tacticals are higher-order constructs used in proof scripts to combine tactics together. With tacticals scripts can be made shorter, readable, and more resilient to changes. Unfortunately they are de facto incompatible with state-of-the-art user interfaces based on script management. Such interfaces indeed do not permit to position the execution point inside complex tacticals, thus introducing a trade-off between the usefulness of structuring scripts and a tedious big step execution behavior during script replaying. In Matita we break this trade-off with tinycals: an alternative to a subset of LCF tacticals which can be evaluated in a more fine-grained manner. Extensible yet meaningful notation. Proof assistant users often face the need of creating new mathematical notation in order to ease the use of new concepts. The framework used in Matita for dealing with extensible notation both accounts for high quality bidimensional rendering of formulae (with the expressivity of MathMLPresentation) and provides meaningful notation, where presentational fragments are kept synchronized with semantic representation of terms. Using our approach interoperability with other systems can be achieved at the content level, and direct manipulation of formulae acting on their rendered forms is possible too. Publish/subscribe hints. Automation plays an important role in interactive proving as users like to delegate tedious proving sub-tasks to decision procedures or external reasoners. Exploiting the Web-friendliness of Matita we experimented with a broker and a network of web services (called tutors) which can try independently to complete open sub-goals of a proof, currently being authored in Matita. The user receives hints from the tutors on how to complete sub-goals and can interactively or automatically apply them to the current proof. Another innovative aspect of Matita, only marginally touched by this thesis, is the embedded content-based search engine Whelp which is exploited to various ends, from automatic theorem proving to avoiding duplicate work for the user. We also discuss the (potential) reusability in other systems of the widgets presented in this thesis and how we envisage the evolution of user interfaces for interactive theorem provers in the Web 2.0 era.
Resumo:
Numerical simulation of the Oldroyd-B type viscoelastic fluids is a very challenging problem. rnThe well-known High Weissenberg Number Problem" has haunted the mathematicians, computer scientists, and rnengineers for more than 40 years. rnWhen the Weissenberg number, which represents the ratio of elasticity to viscosity, rnexceeds some limits, simulations done by standard methods break down exponentially fast in time. rnHowever, some approaches, such as the logarithm transformation technique can significantly improve rnthe limits of the Weissenberg number until which the simulations stay stable. rnrnWe should point out that the global existence of weak solutions for the Oldroyd-B model is still open. rnLet us note that in the evolution equation of the elastic stress tensor the terms describing diffusive rneffects are typically neglected in the modelling due to their smallness. However, when keeping rnthese diffusive terms in the constitutive law the global existence of weak solutions in two-space dimension rncan been shown. rnrnThis main part of the thesis is devoted to the stability study of the Oldroyd-B viscoelastic model. rnFirstly, we show that the free energy of the diffusive Oldroyd-B model as well as its rnlogarithm transformation are dissipative in time. rnFurther, we have developed free energy dissipative schemes based on the characteristic finite element and finite difference framework. rnIn addition, the global linear stability analysis of the diffusive Oldroyd-B model has also be discussed. rnThe next part of the thesis deals with the error estimates of the combined finite element rnand finite volume discretization of a special Oldroyd-B model which covers the limiting rncase of Weissenberg number going to infinity. Theoretical results are confirmed by a series of numerical rnexperiments, which are presented in the thesis, too.