945 resultados para Low-temperature plasma
Resumo:
We present Os and Sr isotopes and Mg, Os, and Sr concentrations for ridge-crest high-temperature and diffuse hydrothermal fluids, plume fluids and ridge-flank warm spring fluids from the Juan de Fuca Ridge. The data are used to evaluate the extent to which (1) the high- and low-temperature hydrothermal alteration of mid-ocean ridge basalts (MORBs) provides Os to the deep oceans, and (2) hydrothermal contributions of non-radiogenic Os and Sr to the oceans are coupled. The Os and Sr isotopic ratios of the high-temperature fluids (265-353°C) are dominated by basalts (187Os/188Os = 0.2; 87Sr/86Sr = 0.704) but the concentrations of these elements are buffered approximately at their seawater values. The 187Os/188Os of the hydrothermal plume fluids collected ~1 m above the orifice of Hulk vent is close to the seawater value (=1.05). The low-temperature diffuse fluids (10-40°C) associated with ridge-crest high-temperature hydrothermal systems on average have [Os] = 31 fmol/kg, 187Os/188Os = 0.9 and [Sr] = 86 µmol/kg, 87Sr/86Sr = 0.709. They appear to result from mixing of a high-temperature fluid and a seawater component. The ridge-flank warm spring fluids (10-62°C) on average yield [Os] = 22 fmol/kg, 187Os/188Os = 0.8 and [Sr] = 115 µmol/kg, 87Sr/86Sr = 0.708. The data are consistent with isotopic exchange of Os and Sr between basalt and circulating seawater during low-temperature hydrothermal alteration. The average Sr concentration in these fluids appears to be similar to seawater and consistent with previous studies. In comparison, the average Os concentration is less than seawater by more than a factor of two. If these data are representative they indicate that low-temperature alteration of MORB does not provide adequate non-radiogenic Os and that another source of mantle Os to the oceans must be investigated. At present, the magnitude of non-radiogenic Sr contribution via low-temperature seawater alteration is not well constrained. If non-radiogenic Sr to the oceans is predominantly from the alteration of MORB, our data suggest that there must be a different source of non-radiogenic Os and that the Os and Sr isotope systems in the oceans are decoupled.
Resumo:
The effect of deposition conditions on characteristic mechanical properties - elastic modulus and hardness - of low-temperature PECVD silicon nitrides is investigated using nanoindentation. lt is found that increase in substrate temperature, increase in plasma power and decrease in chamber gas pressure all result in increases in elastic modulus and hardness. Strong correlations between the mechanical properties and film density are demonstrated. The silicon nitride density in turn is shown to be related to the chemical composition of the films, particularly the silicon/nitrogen ratio. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The low-temperature low-pressure hydrogen based plasmas were used to study the influence of processes and discharge conditions on corrosion removal. The capacitive coupled RF discharge in the continuous or pulsed regime was used at operating pressure of 100-200 Pa. Plasma treatment was monitored by optical emission spectroscopy. To be able to study influence of various process parameters, the model corroded samples with and without sandy incrustation were prepared. The SEM-EDX analyzes were carried out to verify corrosion removal efficiency. Experimental conditions were optimized for the selected most frequent materials of original metallic archaeological objects (iron, bronze, copper, and brass). Chlorides removal is based on hydrogen ion reactions while oxides are removed mainly by neutral species interactions. A special focus was kept for the samples temperature because it was necessary to avoid any metallographic changes in the material structure. The application of higher power pulsed regime with low duty cycle seems be the best treatment regime. The low pressure hydrogen plasma is not applicable for objects with a very broken structure or for nonmetallic objects due to the non-uniform heat stress. Due to this fact, the new developed plasmas generated in liquids were applied on selected original archaeological glass materials.
Resumo:
A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.
Resumo:
Zeolite N was produced from a variety of kaolinites and montmorillonites at low temperature (b100 °C) in a constantly stirred reactor using potassic and potassic+sodic mother liquors with chloride or hydroxyl anions. Reactions were complete (N95% product) in less than 20 h depending on initial batch composition and type of clay minerals. Zeolite N with 1.0bSi/Alb2.2 was produced under these conditions using KOH in the presence of KCl, NaCl, KCl+NaCl and KCl+NaOH. Zeolite N was also formed under high potassium molarities in the absence of KCl. Zeolite synthesis was more sensitive to water content and temperature when sodium was used in initial batch compositions. Syntheses of zeolite N by these methods were undertaken at bench, pilot and industrial scales.
Resumo:
Nanostructured tungsten oxide thin film based gas sensors have been developed by thermal evaporation method to detect CO at low operating temperatures. The influence of Fe-doping and annealing heat treatment on microstructural and gas sensing properties of these films have been investigated. Fe was incorporated in WO3 film by co-evaporation and annealing was performed at 400oC for 2 hours in air. AFM analysis revealed a grain size of about 10-15 nm in all the films. GIXRD analysis showed that as-deposited films are amorphous and annealing at 400oC improved the crystallinity. Raman and XRD analysis indicated that Fe is incorporated in the WO3 matrix as a substitutional impurity, resulting in shorter O-W-O bonds and lattice cell parameters. Doping with Fe contributed significantly towards CO sensing performance of WO3 thin films. A good response to various concentrations (10-1000 ppm) of CO has been achieved with 400oC annealed Fe-doped WO3 film at a low operating temperature of 150oC.
Low temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells
Resumo:
The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.
Resumo:
Accurate thin-film energy dispersive spectroscopic (EDS) analyses of clays with low-atomic-number (low Z) elements (e.g. Na, Al, Si), presents a challenge to the microscopist not only because of the spatial resolution required, but also because of their susceptibility to electron beam-induced radiation damange and very low X-ray count rates. Most common clays, such as kaolinite, smectite and illite occur as submicrometer crystallites with varying degrees of structural disorder in at least two directions and may have dimensions as small as one or two unit cells along the basal direction. Thus, even clays with relatively large a-b dimenstions (e.g., 100 x 100 nm) may be <5nm in the c-axis direction. For typical conditions in an analytical electron microscope (AEM), this sample thickness gives rise to very poor count rates (<200cps) and necessitates long counting times (>300s) in order to obtain satisfactory statistical precision. Unfortunately, beam damage rates for the common clays are very rapid (<10s in imaging mode) between 100kV and 200kV. With a focussed probe for elemental analyses, the damage rate is exacerbated by a high current density and may result in loss of low-Z elements during data collection and consequent loss of analytical accuracy.
Resumo:
Semiconducting metal oxide based gas sensors usually operate in the temperature range 200–500 °C. In this paper, we present a new WO3 thin film based gas sensor for H2 and C2H5OH, operating at 150 °C. Nanostructured WO3 thin films were synthesized by thermal evaporation method. The properties of the as-deposited films were modified by annealing in air at 300 °C and 400 °C. Various analytical techniques such as AFM, TEM, XPS, XRD and Raman spectroscopy have been employed to characterize their properties. A clear indication from TEM and XRD analysis is that the as-deposited WO3 films are highly amorphous and no improvement is observed in the crystallinity of the films after annealing at 300 °C. Annealing at 400 °C significantly improved the crystalline properties of the films with the formation of about 5 nm grains. The films annealed at 300 °C show no response to C2H5OH (ethanol) and a little response to H2, with maximum response obtained at 280 °C. The films annealed at 400 °C show a very good response to H2 and a moderate response to C2H5OH (ethanol) at 150 °C. XPS analysis revealed that annealing of the WO3 thin films at 400 °C produces a significant change in stoichiometry, increasing the number of oxygen vacancies in the film, which is highly beneficial for gas sensing. Our results demonstrate that gas sensors with significant performance at low operating temperatures can be obtained by annealing the WO3 films at 400 °C and optimizing the crystallinity and nanostructure of the as-deposited films.
Resumo:
A low temperature lignocellulose pretreatment process was developed using acid-catalysed mixtures of alkylene carbonate and alkylene glycol. Pretreatment of sugarcane bagasse with mixtures of ethylene carbonate (EC) and ethylene glycol (EG) was more effective than that with mixtures of propylene carbonate (PC) and propylene glycol (PG). These mixtures were more effective than the individual components in making bagasse cellulose more amenable to cellulase digestion. Glucan digestibilities of ≥87% could be achieved with a wide range of EC to EG ratios from 9:1 to 1:1 (w/w). Pretreatment of bagasse by the EC/EG mixture with a ratio of 4:1 in the presence of 1.2% H2SO4 at 90 °C for 30 min led to the highest glucan enzymatic digestibility of 93%. The high glucan digestibilities obtained under these acidic conditions were due to (a) the ability of alkylene carbonate to cause significant biomass size reduction, (b) the ability of alkylene glycol to cause biomass defibrillation, (c) the ability of alkylene carbonate and alkylene glycol to remove xylan and lignin, and (d) the magnified above attributes in the mixtures of alkylene carbonate and alkylene glycol.