909 resultados para Low-carbon process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tangential filtration process was implemented in this study using porous ceramic tubes made of alpha-alumina produced by the slip-casting technique. These tubes were sintered at 1450 degrees C and characterized by mercury intrusion porosimetry, which revealed a mean pore size of 0.5 mu m. The tubes were chemically impregnated with a zirconium citrate solution, after which they were calcined and heat treated at temperatures of up to 600 and 900 degrees C to eliminate volatile organic compounds and transform the zirconium citrate into zirconium oxide impregnated in the alumina in the form of nanoparticle agglomerates. The microporous pipes were tested on a microfiltration hydraulic system to analyze their performance in the demulsification of sunflower oil and water mixtures. The fluid-dynamic parameters of Reynolds number and transmembrane pressure were varied in the process. The volume of permeate was analyzed by measuring the Total Organic Carbon concentration (TOC), which indicated 99% of oil phase retention. The emulsified mixture was characterized by optical microscopy, while the morphology and composition of the impregnated microporous tubes were analyzed by scanning electron microscopy (SEM). Quantification of the TOC values for the tube impregnated once at 600 degrees C showed the best demulsification performance, with the concentration on permeate smaller than 10 mg/L. The impregnated tube sintered once at 900 degrees C presented low carbon concentration (smaller than 20 mg/L), has the advantage of presenting the greatest trans-membrane flux in relation to the other microporous tube. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we assess the climate mitigation potential from afforestation in a mountainous snow-rich region (Switzerland) with strongly varying environmental conditions. Using radiative forcing calculations, we quantify both the carbon sequestration potential and the effect of albedo change at high resolution. We calculate the albedo radiative forcing based on remotely sensed data sets of albedo, global radiation and snow cover. Carbon sequestration is estimated from changes in carbon stocks based on national inventories. We first estimate the spatial pattern of radiative forcing (RF) across Switzerland assuming homogeneous transitions from open land to forest. This highlights where forest expansion still exhibits climatic benefits when including the radiative forcing of albedo change. Second, given that forest expansion is currently the dominant land-use change process in the Swiss Alps, we calculate the radiative forcing that occurred between 1985 and 1997. Our results show that the net RF of forest expansion ranges from −24 W m−2 at low elevations of the northern Prealps to 2 W m−2 at high elevations of the Central Alps. The albedo RF increases with increasing altitude, which offsets the CO2 RF at high elevations with long snow-covered periods, high global radiation and low carbon sequestration. Albedo RF is particularly relevant during transitions from open land to open forest but not in later stages of forest development. Between 1985 and 1997, when overall forest expansion in Switzerland was approximately 4%, the albedo RF offset the CO2 RF by an average of 40%. We conclude that the albedo RF should be considered at an appropriately high resolution when estimating the climatic effect of forestation in temperate mountainous regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sustainable manufacturing process must rely on an also sustainable raw materials and energy supply. This paper is intended to show the results of the studies developed on sustainable business models for the minerals industry as a fundamental previous part of a sustainable manufacturing process. As it has happened in other economic activities, the mining and minerals industry has come under tremendous pressure to improve its social, developmental, and environmental performance. Mining, refining, and the use and disposal of minerals have in some instances led to significant local environmental and social damage. Nowadays, like in other parts of the corporate world, companies are more routinely expected to perform to ever higher standards of behavior, going well beyond achieving the best rate of return for shareholders. They are also increasingly being asked to be more transparent and subject to third-party audit or review, especially in environmental aspects. In terms of environment, there are three inter-related areas where innovation and new business models can make the biggest difference: carbon, water and biodiversity. The focus in these three areas is for two reasons. First, the industrial and energetic minerals industry has significant footprints in each of these areas. Second, these three areas are where the potential environmental impacts go beyond local stakeholders and communities, and can even have global impacts, like in the case of carbon. So prioritizing efforts in these areas will ultimately be a strategic differentiator as the industry businesses continues to grow. Over the next forty years, world?s population is predicted to rise from 6.300 million to 9.500 million people. This will mean a huge demand of natural resources. Indeed, consumption rates are such that current demand for raw materials will probably soon exceed the planet?s capacity. As awareness of the actual situation grows, the public is demanding goods and services that are even more environmentally sustainable. This means that massive efforts are required to reduce the amount of materials we use, including freshwater, minerals and oil, biodiversity, and marine resources. It?s clear that business as usual is no longer possible. Today, companies face not only the economic fallout of the financial crisis; they face the substantial challenge of transitioning to a low-carbon economy that is constrained by dwindling natural resources easily accessible. Innovative business models offer pioneering companies an early start toward the future. They can signal to consumers how to make sustainable choices and provide reward for both the consumer and the shareholder. Climate change and carbon remain major risk discontinuities that we need to better understand and deal with. In the absence of a global carbon solution, the principal objective of any individual country should be to reduce its global carbon emissions by encouraging conservation. The mineral industry internal response is to continue to focus on reducing the energy intensity of our existing operations through energy efficiency and the progressive introduction of new technology. Planning of the new projects must ensure that their energy footprint is minimal from the start. These actions will increase the long term resilience of the business to uncertain energy and carbon markets. This focus, combined with a strong demand for skills in this strategic area for the future requires an appropriate change in initial and continuing training of engineers and technicians and their awareness of the issue of eco-design. It will also need the development of measurement tools for consistent comparisons between companies and the assessments integration of the carbon footprint of mining equipments and services in a comprehensive impact study on the sustainable development of the Economy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of deformation properties of low carbon steels is of particular interest because of their many technological applications. Obtaining fine grained Fe based materials can be approached by one of the several available Severe Plastic Deformation (SPD) techniques. The current paper shows experimental data and simulations of the deformation process of iron samples by Equal Channel Angular Extrusion (ECAE). The samples were extruded in a 120 degrees channel die either by one or a few passes. The heterogeneity and local development of the deformation on the elbow of the channel has been studied by X-ray measuring and simulation of the texture evolution. The Self Consistent models used for simulation allowed the calculation of the spin of the main texture components which agreed pretty well with the experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to the global acceptance of the reality of global warming, ever more countries are in the process of implementing alternative energies such as wind power. In this article, we focus on the transformation of space as a consequence of these newly established alternative energy policies. Landscapes are the level at which political visions and policy decisions endorse (or not) their very materiality. We analyze the deployment of wind power in three European countries, France, Germany and Portugal through the lens of ethnographic landscape studies. We argue that the successful implementation of low carbon futures is highly dependent on the respective national cultures of administration as well as on local practices, initiatives and perceptions of space at the local level. In each of the countries under scrutiny, we analyze the way in which wind power and landscape issues are framed, we point at potential tensions and explore how these are overcome (or not) at the local level so as to give way for the emergence of (new) wind power landscapes. We compare the role played by landscape cultures, institutions or practices in the development and resolution of tensions over the deployment of wind energy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years it has been noticed the progressive disappearance of vernacular sustainable building technologies all over the world mainly due to a strong urban rehabilitation process with modern technologies not compatible with ancient knowledge. Simultaneously new dwellings are needed all over the world and in this sense it was decided to study an ecological and cost-controlled building technology of monolithic walls that can combine the use of low carbon footprint materials, such as earth, fibres and lime using an invasive species: giant reed cane (Arundo Donax). This paper explains the development of this building technology through testing diverse prototypes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relevance of the building sector in the global energy use as well as in the global carbon emissions, both in the developed and developing countries, makes the improvement of the overall energy performance of existing buildings an important part of the actions to mitigate climate changes. Regardless of this potential for energy and emissions saving, large scale building renovation has been found hard to trigger, mainly because present standards are mainly focused on new buildings, not responding effectively to the numerous technical, functional and economic constraints of the existing ones. One of the common problems in the assessment of building renovation scenarios is that only energy savings and costs are normally considered, despite the fact that it has been long recognized that investment on energy efficiency and low carbon technologies yield several benefits beyond the value of saved energy which can be as important as the energy cost savings process. Based on the analysis of significant literature and several case studies, the relevance of co-benefits achieved in the renovation process is highlighted. These benefits can be felt at the building level by the owner or user (like increased user comfort, fewer problems with building physics, improved aesthetics) and should therefore be considered in the definition of the renovation measures, but also at the level of the society as a whole (like health effects, job creation, energy security, impact on climate change), and from this perspective, policy makers must be aware of the possible crossed impacts among different areas of the society for the development of public policies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Climate innovations, that cover both technological applications and process and service innovations, play a key role in climate change mitigation. The purpose of this study was to examine how the Finnish innovation system could be enhanced with governmental measures so that the diffusion of climate innovations could be speeded up. During the study, it became evident that the governmental measures need to support the whole innovation chain, which comprises of research, development, demonstration and deployment. Only this can lead to the successful birth and diffusion of low carbon innovations. The study found that the strengths of the Finnish innovation system are research and development, and the current national innovation policies strongly support these activities. However, these have been emphasised at the expense of the demonstration and deployment. Consequently, the biggest bottlenecks in the Finnish innovation landscape are the lack of pilot and demonstration projects and slow commercialisation, thus the high price of the innovation. To meet with the challenge, the government should firstly promote strict greenhouse gas emission reduction targets. This would boost up the innovation activities, which would also lower the prices of the innovations. To speed up the commercialisation process, measures that stimulate the domestic market, such as feed-in-tariffs and public procurements, are needed. Special attention should also be paid to the measures that could shift the traditional closed innovation chain towards open innovation. This means that the product development should involve experts from several fields such as the user and marketing experts to speed up the commercialisation. In addition, efficient innovation co-operation between both private and public sector is essential. Finally, as the domestic resources are not adequate for producing all the innovations needed, the domestic innovation activities should be focused on a few sectors, and at the same time promote efficient import policies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wind power is a low-carbon energy production form that reduces the dependence of society on fossil fuels. Finland has adopted wind energy production into its climate change mitigation policy, and that has lead to changes in legislation, guidelines, regional wind power areas allocation and establishing a feed-in tariff. Wind power production has indeed boosted in Finland after two decades of relatively slow growth, for instance from 2010 to 2011 wind energy production increased with 64 %, but there is still a long way to the national goal of 6 TWh by 2020. This thesis introduces a GIS-based decision-support methodology for the preliminary identification of suitable areas for wind energy production including estimation of their level of risk. The goal of this study was to define the least risky places for wind energy development within Kemiönsaari municipality in Southwest Finland. Spatial multicriteria decision analysis (SMCDA) has been used for searching suitable wind power areas along with many other location-allocation problems. SMCDA scrutinizes complex ill-structured decision problems in GIS environment using constraints and evaluation criteria, which are aggregated using weighted linear combination (WLC). Weights for the evaluation criteria were acquired using analytic hierarchy process (AHP) with nine expert interviews. Subsequently, feasible alternatives were ranked in order to provide a recommendation and finally, a sensitivity analysis was conducted for the determination of recommendation robustness. The first study aim was to scrutinize the suitability and necessity of existing data for this SMCDA study. Most of the available data sets were of sufficient resolution and quality. Input data necessity was evaluated qualitatively for each data set based on e.g. constraint coverage and attribute weights. Attribute quality was estimated mainly qualitatively by attribute comprehensiveness, operationality, measurability, completeness, decomposability, minimality and redundancy. The most significant quality issue was redundancy as interdependencies are not tolerated by WLC and AHP does not include measures to detect them. The third aim was to define the least risky areas for wind power development within the study area. The two highest ranking areas were Nordanå-Lövböle and Påvalsby followed by Helgeboda, Degerdal, Pungböle, Björkboda, and Östanå-Labböle. The fourth aim was to assess the recommendation reliability, and the top-ranking two areas proved robust whereas the other ones were more sensitive.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The construction of offshore structures, equipment and devices requires a high level of mechanical reliability in terms of strength, toughness and ductility. One major site for mechanical failure, the weld joint region, needs particularly careful examination, and weld joint quality has become a major focus of research in recent times. Underwater welding carried out offshore faces specific challenges affecting the mechanical reliability of constructions completed underwater. The focus of this thesis is on improvement of weld quality of underwater welding using control theory. This research work identifies ways of optimizing the welding process parameters of flux cored arc welding (FCAW) during underwater welding so as to achieve desired weld bead geometry when welding in a water environment. The weld bead geometry has no known linear relationship with the welding process parameters, which makes it difficult to determine a satisfactory weld quality. However, good weld bead geometry is achievable by controlling the welding process parameters. The doctoral dissertation comprises two sections. The first part introduces the topic of the research, discusses the mechanisms of underwater welding and examines the effect of the water environment on the weld quality of wet welding. The second part comprises four research papers examining different aspects of underwater wet welding and its control and optimization. Issues considered include the effects of welding process parameters on weld bead geometry, optimization of FCAW process parameters, and design of a control system for the purpose of achieving a desired bead geometry that can ensure a high level of mechanical reliability in welded joints of offshore structures. Artificial neural network systems and a fuzzy logic controller, which are incorporated in the control system design, and a hybrid of fuzzy and PID controllers are the major control dynamics used. This study contributes to knowledge of possible solutions for achieving similar high weld quality in underwater wet welding as found with welding in air. The study shows that carefully selected steels with very low carbon equivalent and proper control of the welding process parameters are essential in achieving good weld quality. The study provides a platform for further research in underwater welding. It promotes increased awareness of the need to improve the quality of underwater welding for offshore industries and thus minimize the risk of structural defects resulting from poor weld quality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The increasing emphasis on energy efficiency is starting to yield results in the reduction in greenhouse gas emissions; however, the effort is still far from sufficient. Therefore, new technical solutions that will enhance the efficiency of power generation systems are required to maintain the sustainable growth rate, without spoiling the environment. A reduction in greenhouse gas emissions is only possible with new low-carbon technologies, which enable high efficiencies. The role of the rotating electrical machine development is significant in the reduction of global emissions. A high proportion of the produced and consumed electrical energy is related to electrical machines. One of the technical solutions that enables high system efficiency on both the energy production and consumption sides is high-speed electrical machines. This type of electrical machines has a high system overall efficiency, a small footprint, and a high power density compared with conventional machines. Therefore, high-speed electrical machines are favoured by the manufacturers producing, for example, microturbines, compressors, gas compression applications, and air blowers. High-speed machine technology is challenging from the design point of view, and a lot of research is in progress both in academia and industry regarding the solution development. The solid technical basis is of importance in order to make an impact in the industry considering the climate change. This work describes the multidisciplinary design principles and material development in high-speed electrical machines. First, high-speed permanent magnet synchronous machines with six slots, two poles, and tooth-coil windings are discussed in this doctoral dissertation. These machines have unique features, which help in solving rotordynamic problems and reducing the manufacturing costs. Second, the materials for the high-speed machines are discussed in this work. The materials are among the key limiting factors in electrical machines, and to overcome this limit, an in-depth analysis of the material properties and behavior is required. Moreover, high-speed machines are sometimes operating in a harsh environment because they need to be as close as possible to the rotating tool and fully exploit their advantages. This sets extra requirements for the materials applied.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Judged by their negative nutrient balances, low soil cover and low productivity, the predominant agro-pastoral farming systems in the Sudano-Sahelian zone of West Africa are highly unsustainable for crop production intensification. With kaolinite as the main clay type, the cation exchange capacity of the soils in this region, often less than 1 cmol_c kg^-1 soil, depends heavily on the organic carbon (Corg) content. However, due to low carbon sequestration and to the microbe, termite and temperature-induced rapid turnover rates of organic material in the present land-use systems, Corg contents of the topsoil are very low, ranging between 1 and 8 g kg^-1 in most soils. For sustainable food production, the availability of phosphorus (P) and nitrogen (N) has to be increased considerably in combination with an improvement in soil physical properties. Therefore, the adoption of innovative management options that help to stop or even reverse the decline in Corg typically observed after cultivating bush or rangeland is of utmost importance. To maintain food production for a rapidly growing population, targeted applications of mineral fertilisers and the effective recycling of organic amendments as crop residues and manure are essential. Any increase in soil cover has large effects in reducing topsoil erosion by wind and water and favours the accumulation of wind-blown dust high in bases which in turn improves P availability. In the future decision support systems, based on GIS, modelling and simulation should be used to combine (i) available fertiliser response data from on-station and on-farm research, (ii) results on soil productivity restoration with the application of mineral and organic amendments and (iii) our present understanding of the cause-effect relationships governing the prevailing soil degradation processes. This will help to predict the effectiveness of regionally differentiated soil fertility management approaches to maintain or even increase soil Corg levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objetivo: Determinar el nivel de riesgo de la exposición por fracción respirable a polvo de carbón y sílice cristalina y la prevalencia de neumoconiosis en trabajadores de minas de socavón del departamento de Cundinamarca. Métodos: estudio de corte transversal, en grupos de exposición similar (GES) en las minas seleccionadas, el tamaño muestral fue constituido por 11 empresas y 215 trabajadores en donde se realizó un muestreo ambiental para medir los niveles de polvo de carbón y sílice cristalina. Resultados: La edad promedio del grupo fue de 46±9,5 años y género masculino (97,2%), se encontró una asociación significativa entre polvo de carbón y neumoconiosis (p =0,050) y no fue significativa con exposición a sílice cristalina (p = 0,537). El modelo de regresión logística mostró asociación significativa con la escala de nivel de riesgo de carbón medio (OR=10.4, IC 95%:1.50, 71.41, p=0,02), ajustando con variables significativas como: tamaño de la empresa mediana (OR = 2,67, IC 95%:1.07, 6.66, p=0,04), antigüedad mayor o igual a 30 años (OR = 7,186, IC 95%:2.98, 17.29, p=0,001) y habito tabáquico por más de un año (OR = 4,437, IC 95%:2.06, 9.55, p=0,001) para sílice cristalina no hubo asociación en el modelo multivariado. Conclusión: El riesgo de exposición a carbón de nivel medio está relacionado con la prevalencia de neumoconiosis y otros factores adicionales como tamaño de la empresa mediana, antigüedad mayor o igual a 30 años y habito tabáquico por más de un año para los trabajadores de minería de socavón en Cundinamarca. Para los niveles de sílice cristalina no se encontró asociación significativa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PV only generates electricity during daylight hours and primarily generates over summer. In the UK, the carbon intensity of grid electricity is higher during the daytime and over winter. This work investigates whether the grid electricity displaced by PV is high or low carbon compared to the annual mean carbon intensity using carbon factors at higher temporal resolutions (half-hourly and daily). UK policy for carbon reporting requires savings to be calculated using the annual mean carbon intensity of grid electricity. This work offers an insight into whether this technique is appropriate. Using half hourly data on the generating plant supplying the grid from November 2008 to May 2010, carbon factors for grid electricity at half-hourly and daily resolution have been derived using technology specific generation emission factors. Applying these factors to generation data from PV systems installed on schools, it is possible to assess the variation in the carbon savings from displacing grid electricity with PV generation using carbon factors with different time resolutions. The data has been analyzed for a period of 363 to 370 days and so cannot account for inter-year variations in the relationship between PV generation and carbon intensity of the electricity grid. This analysis suggests that PV displaces more carbon intensive electricity using half-hourly carbon factors than using daily factors but less compared with annual ones. A similar methodology could provide useful insights on other variable renewable and demand-side technologies and in other countries where PV performance and grid behavior are different.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Global temperatures are expected to rise by between 1.1 and 6.4oC this century, depending, to a large extent, on the amount of carbon we emit to the atmosphere from now onwards. This warming is expected to have very negative effects on many peoples and ecosystems and, therefore, minimising our carbon emissions is a priority. Buildings are estimated to be responsible for around 50% of carbon emissions in the UK. Potential reductions involve both operational emissions, produced during use, and embodied emissions, produced during manufacture of materials and components, and during construction, refurbishments and demolition. To date the major effort has focused on reducing the, apparently, larger operational element, which is more readily quantifiable and reduction measures are relatively straightforward to identify and implement. Various studies have compared the magnitude of embodied and operational emissions, but have shown considerable variation in the relative values. This illustrates the difficulties in quantifying embodied, as it requires a detailed knowledge of the processes involved in the different life cycle phases, and requires the use of consistent system boundaries. However, other studies have established the interaction between operational and embodied, which demonstrates the importance of considering both elements together in order to maximise potential reductions. This is borne out in statements from both the Intergovernmental Panel on Climate Change and The Low Carbon Construction Innovation and Growth Team of the UK Government. In terms of meeting the 2020 and 2050 timeframes for carbon reductions it appears to be equally, if not more, important to consider early embodied carbon reductions, rather than just future operational reductions. Future decarbonisation of energy supply and more efficient lighting and M&E equipment installed in future refits is likely to significantly reduce operational emissions, lending further weight to this argument. A method of discounting to evaluate the present value of future carbon emissions would allow more realistic comparisons to be made on the relative importance of the embodied and operational elements. This paper describes the results of case studies on carbon emissions over the whole lifecycle of three buildings in the UK, compares four available software packages for determining embodied carbon and suggests a method of carbon discounting to obtain present values for future emissions. These form the initial stages of a research project aimed at producing information on embodied carbon for different types of building, components and forms of construction, in a simplified form, which can be readily used by building designers in optimising building design in terms of minimising overall carbon emissions. Keywords: Embodied carbon; carbon emission; building; operational carbon.