936 resultados para Longest Path
Resumo:
Objects in an environment are often encountered sequentially during spatial learning, forming a path along which object locations are experienced. The present study investigated the effect of spatial information conveyed through the path in visual and proprioceptive learning of a room-sized spatial layout, exploring whether different modalities differentially depend on the integrity of the path. Learning object locations along a coherent path was compared with learning them in a spatially random manner. Path integrity had little effect on visual learning, whereas learning with the coherent path produced better memory performance than random order learning for proprioceptive learning. These results suggest that path information has differential effects in visual and proprioceptive spatial learning, perhaps due to a difference in the way one establishes a reference frame for representing relative locations of objects.
Resumo:
Semiconductor III-V quantum dots (QDs) are particularly enticing components for the integration of optically promising III-V materials with the silicon technology prevalent in the microelectronics industry. However, defects due to deviations from a stoichiometric composition [group III: group V = 1] may lead to impaired device performance. This paper investigates the initial stages of formation of InSb and GaAs QDs on Si(1 0 0) through hybrid numerical simulations. Three situations are considered: a neutral gas environment (NG), and two ionized gas environments, namely a localized ion source (LIS) and a background plasma (BP) case. It is shown that when the growth is conducted in an ionized gas environment, a stoichiometric composition may be obtained earlier in the QD as compared to a NG. Moreover, the stoichiometrization time, tst, is shorter for the BP case compared to the LIS scenario. A discussion of the effect of ion/plasma-based tools as well as a range of process conditions on the final island size distribution is also included. Our results suggest a way to obtain a deterministic level of control over nanostructure properties (in particular, elemental composition and size) during the initial stages of growth which is a crucial step towards achieving highly tailored QDs suitable for implementation in advanced technological devices.
Aligning off-balance sheet risk, on-balance sheet risk and audit fees: a PLS path modelling analysis
Resumo:
This study focuses on using the partial least squares (PLS) path modelling technique in archival auditing research by replicating the data and research questions from prior bank audit fee studies. PLS path modelling allows for inter-correlations among audit fee determinants by establishing latent constructs and multiple relationship paths in one simultaneous PLS path model. Endogeneity concerns about auditor choice can also be addressed with PLS path modelling. With a sample of US bank holding companies for the period 2003-2009, we examine the associations among on-balance sheet financial risks, off-balance sheet risks and audit fees, and also address the pervasive client size effect, and the effect of the self-selection of auditors. The results endorse the dominating effect of size on audit fees, both directly and indirectly via its impacts on other audit fee determinants. By simultaneously considering the self-selection of auditors, we still find audit fee premiums on Big N auditors, which is the second important factor on audit fee determination. On-balance-sheet financial risk measures in terms of capital adequacy, loan composition, earnings and asset quality performance have positive impacts on audit fees. After allowing for the positive influence of on-balance sheet financial risks and entity size on off-balance sheet risk, the off-balance sheet risk measure, SECRISK, is still positively associated with bank audit fees, both before and after the onset of the financial crisis. The consistent results from this study compared with prior literature provide supporting evidence and enhance confidence on the application of this new research technique in archival accounting studies.
Aligning off-balance sheet risk, on-balance sheet risk and audit fees: a PLS path modelling analysis
Resumo:
This study focuses on using the partial least squares (PLS) path modelling methodology in archival auditing research by replicating the data and research questions from prior bank audit fee studies. PLS path modelling allows for inter-correlations among audit fee determinants by establishing latent constructs and multiple relationship paths in one simultaneous PLS path model. Endogeneity concerns about auditor choice can also be addressed with PLS path modelling. With a sample of US bank holding companies for the period 2003-2009, we examine the associations among on-balance sheet financial risks, off-balance sheet risks and audit fees, and also address the pervasive client size effect, and the effect of the self-selection of auditors. The results endorse the dominating effect of size on audit fees, both directly and indirectly via its impacts on other audit fee determinants. By simultaneously considering the self-selection of auditors, we still find audit fee premiums on Big N auditors, which is the second important factor on audit fee determination. On-balance-sheet financial risk measures in terms of capital adequacy, loan composition, earnings and asset quality performance have positive impacts on audit fees. After allowing for the positive influence of on-balance sheet financial risks and entity size on off-balance sheet risk, the off-balance sheet risk measure, SECRISK, is still positively associated with bank audit fees, both before and after the onset of the financial crisis. The consistent results from this study compared with prior literature provide supporting evidence and enhance confidence on the application of this new research technique in archival accounting studies.
Resumo:
The work presented in this report is aimed to implement a cost-effective offline mission path planner for aerial inspection tasks of large linear infrastructures. Like most real-world optimisation problems, mission path planning involves a number of objectives which ideally should be minimised simultaneously. Understandably, the objectives of a practical optimisation problem are conflicting each other and the minimisation of one of them necessarily implies the impossibility to minimise the other ones. This leads to the need to find a set of optimal solutions for the problem; once such a set of available options is produced, the mission planning problem is reduced to a decision making problem for the mission specialists, who will choose the solution which best fit the requirements of the mission. The goal of this work is then to develop a Multi-Objective optimisation tool able to provide the mission specialists a set of optimal solutions for the inspection task amongst which the final trajectory will be chosen, given the environment data, the mission requirements and the definition of the objectives to minimise. All the possible optimal solutions of a Multi-Objective optimisation problem are said to form the Pareto-optimal front of the problem. For any of the Pareto-optimal solutions, it is impossible to improve one objective without worsening at least another one. Amongst a set of Pareto-optimal solutions, no solution is absolutely better than another and the final choice must be a trade-off of the objectives of the problem. Multi-Objective Evolutionary Algorithms (MOEAs) are recognised to be a convenient method for exploring the Pareto-optimal front of Multi-Objective optimization problems. Their efficiency is due to their parallelism architecture which allows to find several optimal solutions at each time
Resumo:
Path integration is a process with which navigators derive their current position and orientation by integrating self-motion signals along a locomotion trajectory. It has been suggested that path integration becomes disproportionately erroneous when the trajectory crosses itself. However, there is a possibility that this previous finding was confounded by effects of the length of a traveled path and the amount of turns experienced along the path, two factors that are known to affect path integration performance. The present study was designed to investigate whether the crossover of a locomotion trajectory truly increases errors of path integration. In an experiment, blindfolded human navigators were guided along four paths that varied in their lengths and turns, and attempted to walk directly back to the beginning of the paths. Only one of the four paths contained a crossover. Results showed that errors yielded from the path containing the crossover were not always larger than those observed in other paths, and the errors were attributed solely to the effects of longer path lengths or greater degrees of turns. These results demonstrated that path crossover does not always cause significant disruption in path integration processes. Implications of the present findings for models of path integration are discussed.
Resumo:
The majority of tertiary practice-led creative arts disciplines became part of the Australian university system as a result of the creation of the Unified National System of tertiary education in 1988. Over the past two decades, research has grown as the yardstick by which academic performance in the Australian university sector is recognised and rewarded. Academics in artistic disciplines, who struggled to adapt to a culture and workload expectations different from their previous, predominantly teaching based, employment, continue to see their research under-valued within the established evaluation framework. Despite a late 1990s Australian government funded inquiry, many of the inequities remain. While the Excellence in Research in Australia (ERA) exercise has acknowledged the non-text outputs of artist-academics in its evaluation of 'research outcomes', much of the process remains resolutely framed by measures that work against creative arts researchers.
Resumo:
The detection of line-like features in images finds many applications in microanalysis. Actin fibers, microtubules, neurites, pilis, DNA, and other biological structures all come up as tenuous curved lines in microscopy images. A reliable tracing method that preserves the integrity and details of these structures is particularly important for quantitative analyses. We have developed a new image transform called the "Coalescing Shortest Path Image Transform" with very encouraging properties. Our scheme efficiently combines information from an extensive collection of shortest paths in the image to delineate even very weak linear features. © Copyright Microscopy Society of America 2011.
Resumo:
In studies of germ cell transplantation, measureing tubule diameters and counting cells from different populations using antibodies as markers are very important. Manual measurement of tubule sizes and cell counts is a tedious and sanity grinding work. In this paper, we propose a new boundary weighting based tubule detection method. We first enhance the linear features of the input image and detect the approximate centers of tubules. Next, a boundary weighting transform is applied to the polar transformed image of each tubule region and a circular shortest path is used for the boundary detection. Then, ellipse fitting is carried out for tubule selection and measurement. The algorithm has been tested on a dataset consisting of 20 images, each having about 20 tubules. Experiments show that the detection results of our algorithm are very close to the results obtained manually. © 2013 IEEE.
Resumo:
This paper presents an extension to the Rapidly-exploring Random Tree (RRT) algorithm applied to autonomous, drifting underwater vehicles. The proposed algorithm is able to plan paths that guarantee convergence in the presence of time-varying ocean dynamics. The method utilizes 4-Dimensional, ocean model prediction data as an evolving basis for expanding the tree from the start location to the goal. The performance of the proposed method is validated through Monte-Carlo simulations. Results illustrate the importance of the temporal variance in path execution, and demonstrate the convergence guarantee of the proposed methods.
Resumo:
There is a need for systems which can autonomously perform coverage tasks on large outdoor areas. Unfortunately, the state-of-the-art is to use GPS based localization, which is not suitable for precise operations near trees and other obstructions. In this paper we present a robotic platform for autonomous coverage tasks. The system architecture integrates laser based localization and mapping using the Atlas Framework with Rapidly-Exploring Random Trees path planning and Virtual Force Field obstacle avoidance. We demonstrate the performance of the system in simulation as well as with real world experiments.
Resumo:
One of the main challenges facing online and offline path planners is the uncertainty in the magnitude and direction of the environmental energy because it is dynamic, changeable with time, and hard to forecast. This thesis develops an artificial intelligence for a mobile robot to learn from historical or forecasted data of environmental energy available in the area of interest which will help for a persistence monitoring under uncertainty using the developed algorithm.
Resumo:
This paper addresses less recognised factors which influence the diffusion of a particular technology. While an innovation’s attributes and performance are paramount, many fail because of external factors which favour an alternative. This paper, with theoretic input from diffusion, lock-in and path-dependency, presents a qualitative study of external factors that influenced the evolution of transportation in USA. This historical account reveals how one technology and its emergent systems become dominant while other choices are overridden by socio-political, economic and technological interests which include not just the manufacturing and service industries associated with the automobile but also government and market stakeholders. Termed here as a large socio-economic regime (LSER),its power in ensuring lock-in and continued path-dependency is shown to pass through three stages, weakening eventually as awareness improves. The study extends to transport trends in China, Korea, Indonesia and Malaysia and they all show the dominant role of an LSER. As transportation policy is increasingly accountable to address both demand and environmental concerns and innovators search for solutions, this paper presents important knowledge for innovators, marketers and policy makers for commercial and societal reasons, especially when negative externalities associated with an incumbent transportation technology may lead to market failure.