973 resultados para Local Search
Resumo:
This paper tackles the problem of showing that evolutionary algorithms for fuzzy clustering can be more efficient than systematic (i.e. repetitive) approaches when the number of clusters in a data set is unknown. To do so, a fuzzy version of an Evolutionary Algorithm for Clustering (EAC) is introduced. A fuzzy cluster validity criterion and a fuzzy local search algorithm are used instead of their hard counterparts employed by EAC. Theoretical complexity analyses for both the systematic and evolutionary algorithms under interest are provided. Examples with computational experiments and statistical analyses are also presented.
Resumo:
A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (I the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry`s own practice. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The Combinatorial Optimization is a basic area to companies who look for competitive advantages in the diverse productive sectors and the Assimetric Travelling Salesman Problem, which one classifies as one of the most important problems of this area, for being a problem of the NP-hard class and for possessing diverse practical applications, has increased interest of researchers in the development of metaheuristics each more efficient to assist in its resolution, as it is the case of Memetic Algorithms, which is a evolutionary algorithms that it is used of the genetic operation in combination with a local search procedure. This work explores the technique of Viral Infection in one Memetic Algorithms where the infection substitutes the mutation operator for obtaining a fast evolution or extinguishing of species (KANOH et al, 1996) providing a form of acceleration and improvement of the solution . For this it developed four variants of Viral Infection applied in the Memetic Algorithms for resolution of the Assimetric Travelling Salesman Problem where the agent and the virus pass for a symbiosis process which favored the attainment of a hybrid evolutionary algorithms and computational viable
Resumo:
Techniques of optimization known as metaheuristics have achieved success in the resolution of many problems classified as NP-Hard. These methods use non deterministic approaches that reach very good solutions which, however, don t guarantee the determination of the global optimum. Beyond the inherent difficulties related to the complexity that characterizes the optimization problems, the metaheuristics still face the dilemma of xploration/exploitation, which consists of choosing between a greedy search and a wider exploration of the solution space. A way to guide such algorithms during the searching of better solutions is supplying them with more knowledge of the problem through the use of a intelligent agent, able to recognize promising regions and also identify when they should diversify the direction of the search. This way, this work proposes the use of Reinforcement Learning technique - Q-learning Algorithm - as exploration/exploitation strategy for the metaheuristics GRASP (Greedy Randomized Adaptive Search Procedure) and Genetic Algorithm. The GRASP metaheuristic uses Q-learning instead of the traditional greedy-random algorithm in the construction phase. This replacement has the purpose of improving the quality of the initial solutions that are used in the local search phase of the GRASP, and also provides for the metaheuristic an adaptive memory mechanism that allows the reuse of good previous decisions and also avoids the repetition of bad decisions. In the Genetic Algorithm, the Q-learning algorithm was used to generate an initial population of high fitness, and after a determined number of generations, where the rate of diversity of the population is less than a certain limit L, it also was applied to supply one of the parents to be used in the genetic crossover operator. Another significant change in the hybrid genetic algorithm is the proposal of a mutually interactive cooperation process between the genetic operators and the Q-learning algorithm. In this interactive/cooperative process, the Q-learning algorithm receives an additional update in the matrix of Q-values based on the current best solution of the Genetic Algorithm. The computational experiments presented in this thesis compares the results obtained with the implementation of traditional versions of GRASP metaheuristic and Genetic Algorithm, with those obtained using the proposed hybrid methods. Both algorithms had been applied successfully to the symmetrical Traveling Salesman Problem, which was modeled as a Markov decision process
Resumo:
The Capacitated Centered Clustering Problem (CCCP) consists of defining a set of p groups with minimum dissimilarity on a network with n points. Demand values are associated with each point and each group has a demand capacity. The problem is well known to be NP-hard and has many practical applications. In this paper, the hybrid method Clustering Search (CS) is implemented to solve the CCCP. This method identifies promising regions of the search space by generating solutions with a metaheuristic, such as Genetic Algorithm, and clustering them into clusters that are then explored further with local search heuristics. Computational results considering instances available in the literature are presented to demonstrate the efficacy of CS. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An efficient heuristic algorithm is presented in this work in order to solve the optimal capacitor placement problem in radial distribution systems. The proposal uses the solution from the mathematical model after relaxing the integrality of the discrete variables as a strategy to identify the most attractive bus to add capacitors to each step of the heuristic algorithm. The relaxed mathematical model is a nonlinear programming problem and is solved using a specialized interior point method, The algorithm still incorporates an additional strategy of local search that enables the finding of a group of quality solutions after small alterations in the optimization strategy. Proposed solution methodology has been implemented and tested in known electric systems getting a satisfactory outcome compared with metaheuristic methods.The tests carried out in electric systems known in specialized literature reveal the satisfactory outcome of the proposed algorithm compared with metaheuristic methods. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Quadratic Minimum Spanning Tree Problem (QMST) is a version of the Minimum Spanning Tree Problem in which, besides the traditional linear costs, there is a quadratic structure of costs. This quadratic structure models interaction effects between pairs of edges. Linear and quadratic costs are added up to constitute the total cost of the spanning tree, which must be minimized. When these interactions are restricted to adjacent edges, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). AQMST and QMST are NP-hard problems that model several problems of transport and distribution networks design. In general, AQMST arises as a more suitable model for real problems. Although, in literature, linear and quadratic costs are added, in real applications, they may be conflicting. In this case, it may be interesting to consider these costs separately. In this sense, Multiobjective Optimization provides a more realistic model for QMST and AQMST. A review of the state-of-the-art, so far, was not able to find papers regarding these problems under a biobjective point of view. Thus, the objective of this Thesis is the development of exact and heuristic algorithms for the Biobjective Adjacent Only Quadratic Spanning Tree Problem (bi-AQST). In order to do so, as theoretical foundation, other NP-hard problems directly related to bi-AQST are discussed: the QMST and AQMST problems. Bracktracking and branch-and-bound exact algorithms are proposed to the target problem of this investigation. The heuristic algorithms developed are: Pareto Local Search, Tabu Search with ejection chain, Transgenetic Algorithm, NSGA-II and a hybridization of the two last-mentioned proposals called NSTA. The proposed algorithms are compared to each other through performance analysis regarding computational experiments with instances adapted from the QMST literature. With regard to exact algorithms, the analysis considers, in particular, the execution time. In case of the heuristic algorithms, besides execution time, the quality of the generated approximation sets is evaluated. Quality indicators are used to assess such information. Appropriate statistical tools are used to measure the performance of exact and heuristic algorithms. Considering the set of instances adopted as well as the criteria of execution time and quality of the generated approximation set, the experiments showed that the Tabu Search with ejection chain approach obtained the best results and the transgenetic algorithm ranked second. The PLS algorithm obtained good quality solutions, but at a very high computational time compared to the other (meta)heuristics, getting the third place. NSTA and NSGA-II algorithms got the last positions
Resumo:
Due to great difficulty of accurate solution of Combinatorial Optimization Problems, some heuristic methods have been developed and during many years, the analysis of performance of these approaches was not carried through in a systematic way. The proposal of this work is to make a statistical analysis of heuristic approaches to the Traveling Salesman Problem (TSP). The focus of the analysis is to evaluate the performance of each approach in relation to the necessary computational time until the attainment of the optimal solution for one determined instance of the TSP. Survival Analysis, assisted by methods for the hypothesis test of the equality between survival functions was used. The evaluated approaches were divided in three classes: Lin-Kernighan Algorithms, Evolutionary Algorithms and Particle Swarm Optimization. Beyond those approaches, it was enclosed in the analysis, a memetic algorithm (for symmetric and asymmetric TSP instances) that utilizes the Lin-Kernighan heuristics as its local search procedure
Resumo:
The distribution of petroleum products through pipeline networks is an important problem that arises in production planning of refineries. It consists in determining what will be done in each production stage given a time horizon, concerning the distribution of products from source nodes to demand nodes, passing through intermediate nodes. Constraints concerning storage limits, delivering time, sources availability, limits on sending or receiving, among others, have to be satisfied. This problem can be viewed as a biobjective problem that aims at minimizing the time needed to for transporting the set of packages through the network and the successive transmission of different products in the same pipe is called fragmentation. This work are developed three algorithms that are applied to this problem: the first algorithm is discrete and is based on Particle Swarm Optimization (PSO), with local search procedures and path-relinking proposed as velocity operators, the second and the third algorithms deal of two versions based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The proposed algorithms are compared to other approaches for the same problem, in terms of the solution quality and computational time spent, so that the efficiency of the developed methods can be evaluated
Resumo:
This work presents a algorithmic study of Multicast Packing Problem considering a multiobjective approach. The first step realized was an extensive review about the problem. This review serverd as a reference point for the definition of the multiobjective mathematical model. Then, the instances used in the experimentation process were defined, this instances were created based on the main caracteristics from literature. Since both mathematical model and the instances were definined, then several algoritms were created. The algorithms were based on the classical approaches to multiobjective optimization: NSGA2 (3 versions), SPEA2 (3 versions). In addition, the GRASP procedures were adapted to work with multiples objectives, two vesions were created. These algorithms were composed by three recombination operators(C1, C2 e C3), two operator for build solution, a mutation operator and a local search procedure. Finally, a long experimentation process was performed. This process has three stages: the first consisted of adjusting the parameters; the second was perfomed to indentify the best version for each algorithm. After, the best versions for each algorithm were compared in order to identify the best algorithm among all. The algorithms were evaluated based on quality indicators and Hypervolume Multiplicative Epsilon
Resumo:
This paper introduces a new variant of the Traveling Car Renter Problem, named Prizecollecting Traveling Car Renter Problem. In this problem, a set of vertices, each associated with a bonus, and a set of vehicles are given. The objective is to determine a cycle that visits some vertices collecting, at least, a pre-defined bonus, and minimizing the cost of the tour that can be traveled with different vehicles. A mathematical formulation is presented and implemented in a solver to produce results for sixty-two instances. The proposed problem is also subject of an experimental study based on the algorithmic application of four metaheuristics representing the best adaptations of the state of the art of the heuristic programming.We also provide new local search operators which exploit the neighborhoods of the problem, construction procedures and adjustments, created specifically for the addressed problem. Comparative computational experiments and performance tests are performed on a sample of 80 instances, aiming to offer a competitive algorithm to the problem. We conclude that memetic algorithms, computational transgenetic and a hybrid evolutive algorithm are competitive in tests performed
Resumo:
O problema de minimização de troca de ferramentas (MTSP) busca uma sequência de processamento de um conjunto de tarefas, de modo a minimizar o número de trocas de ferramentas requeridas. Este trabalho apresenta uma nova heurística para o MTSP, capaz de produzir bons limitantes superiores para um algoritmo enumerativo. Esta heurística possui duas fases: uma fase construtiva que é baseada em um grafo em que os vértices correspondem a ferramentas e existe um arco k = (i, j) que liga os vértices i e j se e somente se as ferramentas i e j são necessárias para a execução de alguma tarefa k; e uma fase de refinamento baseada na meta-heurística Busca Local Iterativa. Resultados computacionais mostram que a heurística proposta tem um bom desempenho para os problemas testados, contribuindo para uma redução significativa no número de nós gerados de um algoritmo enumerativo.
Resumo:
A lot sizing and scheduling problem from a foundry is considered in which key materials are produced and then transformed into many products on a single machine. A mixed integer programming (MIP) model is developed, taking into account sequence-dependent setup costs and times, and then adapted for rolling horizon use. A relax-and-fix (RF) solution heuristic is proposed and computationally tested against a high-performance MIP solver. Three variants of local search are also developed to improve the RF method and tested. Finally the solutions are compared with those currently practiced at the foundry.
Resumo:
A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (1) the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry's own practice. © 2006 Elsevier Ltd. All rights reserved.