136 resultados para Liouville
Resumo:
We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Neste trabalho, foi construída uma forma integral para a solução das equações de transporte em uma, duas e três dimensões, considerando o núcleo de espalhamento de Klein-Nishina, espalhamento isotrópico e o núcleo de espalhamento de Rutherford, respectivamente, seguindo a mesma idéia proposta em trabalhos recentes, nos quais foi construída uma solução para a equação de transporte de nêutrons em geometria cartesiana, usando derivada fracionária. A metodologia consiste em igualar a derivada fracionária do fluxo angular à equação integral, determinar a ordem da derivada fracionária comparando o núcleo da equação integral com o da definição de Riemann-Liouville. Essa formulação foi aplicada ao cálculo de dose absorvida. São apresentadas soluções geradas a partir do emprego do método da derivada fracionária e comparadas a resultados disponíveis na literatura.
Resumo:
The problem of a fermion subject to a general scalar potential in a two-dimensional world is mapped into a Sturm-Liouville problem for nonzero eigenenergies. The searching for possible bounded solutions is done in the circumstance of power-law potentials. The normalizable zero-eigenmode solutions are also searched. For the specific case of an inversely linear potential, which gives rise to an effective Kratzer potential, exact bounded solutions are found in closed form. The behaviour of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The problem of a fermion subject to a general mixing of vector and scalar potentials in a two-dimensional world is mapped into a Sturm-Liouville problem. Isolated bounded solutions are also searched. For the specific case of an inversely linear potential, which gives rise to an effective Kratzer potential in the Sturm-Liouville problem, exact bounded solutions are found in closed form. The case of a pure scalar potential with their isolated zero-energy solutions, already analyzed in a previous work, is obtained as a particular case. The behavior of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The problem of a fermion subject to a convenient mixing of vector and scalar potentials in a two-dimensional space-time is mapped into a Sturm-Liouville problem. For a specific case which gives rise to an exactly solvable effective modified Poschl-Teller potential in the Sturm-Liouville problem, bound-state solutions are found. The behaviour of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. The Dirac delta potential as a limit of the modified Poschl-Teller potential is also discussed. The problem is also shown to be mapped into that of massless fermions subject to classical topological scalar and pseudoscalar potentials. Copyright (C) EPLA, 2007.
Resumo:
The Dirac equation is analyzed for nonconserving-parity pseudoscalar radial potentials in 3+1 dimensions. It is shown that despite the nonconservation of parity this general problem can be reduced to a Sturm-Liouville problem of nonrelativistic fermions in spherically symmetric effective potentials. The searching for bounded solutions is done for the power-law and Yukawa potentials. The use of the methodology of effective potentials allow us to conclude that the existence of bound-state solutions depends whether the potential leads to a definite effective potential-well structure or to an effective potential less singular than -1/4r(2).
Resumo:
The intrinsically relativistic problem of a fermion subject to a pseudoscalar screened Coulomb plus a uniform background potential in two-dimensional space-time is mapped into a Sturm-Liouville. This mapping gives rise to an effective Morse-like potential and exact bounded solutions are found. It is shown that the uniform background potential determinates the number of bound-state solutions. The behaviour of the eigenenergies as well as of the upper and lower components of the Dirac spinor corresponding to bounded solutions is discussed in detail and some unusual results are revealed. An apparent paradox concerning the uncertainty principle is solved by recurring to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The problem of a fermion subject to a a scalar inversely linear potential in a two-dimensional world is mapped into a Sturm-Liouville problem for nonzero eigenenergies. This mapping gives rise to an effective Kratzer potential and exact bounded solutions are found in closed form. The normalizable zero-eigenmode solution is also found. A few unusual results are revealed.
Resumo:
Some years ago, Cho and Vilenkin, introduced a model which presents topological solutions, despite not having degenerate vacua as is usually expected. Here we present a new model with topological defects, connecting degenerate vacua but which in a certain limit recovers precisely the one proposed originally by Cho and Vilenkin. In other words, we found a kind of parent model for the so called vacuumless model. Then the idea is extended to a model recently introduced by Bazeia et al. Finally, we trace some comments the case of the Liouville model.
Resumo:
The problem of a fermion subject to a general scalar potential in a two-dimensional world for nonzero eigenenergies is mapped into a Sturm-Liouville problem for the upper component of the Dirac spinor. In the specific circumstance of an exponential potential, we have an effective Morse potential which reveals itself as an essentially relativistic problem. Exact bound solutions are found in closed form for this problem. The behaviour of the upper and lower components of the Dirac spinor is discussed in detail, particularly the existence of zero modes. (c) 2005 Elsevier B.v. All rights reserved.
Resumo:
The intrinsically relativistic problem of neutral fermions subject to kink-like potentials (similar to tanh gamma x) is investigated and the exact bound-state solutions are found. Apart from the lonely hump solutions for E = +/- mc(2), the problem is mapped into the exactly solvable Sturm-Liouville problem with a modified Poschl-Teller potential. An apparent paradox concerning the uncertainty principle is solved by resorting to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The problem of neutral fermions subject to a pseudoscalar potential is investigated. Apart from the solutions for E = +/- mc(2), the problem is mapped into the Sturm-Liouville equation. The case of a singular trigonometric tangent potential (similar to tan gamma x) is exactly solved and the complete set of solutions is discussed in some detail. It is revealed that this intrinsically relativistic and true confining potential is able to localize fermions into a region of space arbitrarily small without the menace of particle-antiparticle production.
Resumo:
Laminar forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumption used in this work is a laminar flow of a power flow inside elliptical tube, under a boundary condition of first kind with constant physical properties and negligible axial heat diffusion (high Peclet number). To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number and the average Nusselt number for various cross-section aspect ratios. (C) 2006 Elsevier. SAS. All rights reserved.
Resumo:
The mapping of the Wigner distribution function (WDF) for a given bound state onto a semiclassical distribution function (SDF) satisfying the Liouville equation introduced previously by us is applied to the ground state of the Morse oscillator. The purpose of the present work is to obtain values of the potential parameters represented by the number of levels in the case of the Morse oscillator, for which the SDF becomes a faithful approximation of the corresponding WDF. We find that for a Morse oscillator with one level only, the agreement between the WDF and the mapped SDF is very poor but for a Morse oscillator of ten levels it becomes satisfactory. We also discuss the limit h --> 0 for fixed potential parameters.
Time evolution of the Wigner function in discrete quantum phase space for a soluble quasi-spin model
Resumo:
The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.