975 resultados para Linear matrix inequalities (LMI)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the fuzzy Lyapunov function approach is considered for stabilizing continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing a slack LMI variable into the problem formulation. The stability results are thus used in the state feedback design which is also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilizing conditions presented. © 2011 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new switched control design method for some classes of linear time-invariant systems with polytopic uncertainties. This method uses a quadratic Lyapunov function to design the feedback controller gains based on linear matrix inequalities (LMIs). The controller gain is chosen by a switching law that returns the smallest value of the time derivative of the Lyapunov function. The proposed methodology offers less conservative alternative than the well-known controller for uncertain systems with only one state feedback gain. The control design of a magnetic levitator illustrates the procedure. © 2013 Wallysonn A. de Souza et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new methodology to analyze aeroelastic stability in a continuous range of flight envelope with varying parameter of velocity and altitude. The focus of the paper is to demonstrate that linear matrix inequalities can be used to evaluate the aeroelastic stability in a region of flight envelope instead of a single point, like classical methods. The proposed methodology can also be used to study if a system remains stable during an arbitrary motion from one point to another in the flight envelope, i.e., when the problem becomes time-variant. The main idea is to represent the system as a polytopic differential inclusion system using rational function approximation to write the model in time domain. The theory is outlined and simulations are carried out on the benchmark AGARD 445.6 wing to demonstrate the method. The classical pk-method is used for comparing results and validating the approach. It is shown that this method is efficient to identify stability regions in the flight envelope. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the solution to the problem of robust model predictive control (MPC) of systems with model uncertainty. The case of zone control of multi-variable stable systems with multiple time delays is considered. The usual approach of dealing with this kind of problem is through the inclusion of non-linear cost constraint in the control problem. The control action is then obtained at each sampling time as the solution to a non-linear programming (NLP) problem that for high-order systems can be computationally expensive. Here, the robust MPC problem is formulated as a linear matrix inequality problem that can be solved in real time with a fraction of the computer effort. The proposed approach is compared with the conventional robust MPC and tested through the simulation of a reactor system of the process industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic approach to model nonlinear systems using norm-bounded linear differential inclusions (NLDIs) is proposed in this paper. The resulting NLDI model is suitable for the application of linear control design techniques and, therefore, it is possible to fulfill certain specifications for the underlying nonlinear system, within an operating region of interest in the state-space, using a linear controller designed for this NLDI model. Hence, a procedure to design a dynamic output feedback controller for the NLDI model is also proposed in this paper. One of the main contributions of the proposed modeling and control approach is the use of the mean-value theorem to represent the nonlinear system by a linear parameter-varying model, which is then mapped into a polytopic linear differential inclusion (PLDI) within the region of interest. To avoid the combinatorial problem that is inherent of polytopic models for medium- and large-sized systems, the PLDI is transformed into an NLDI, and the whole process is carried out ensuring that all trajectories of the underlying nonlinear system are also trajectories of the resulting NLDI within the operating region of interest. Furthermore, it is also possible to choose a particular structure for the NLDI parameters to reduce the conservatism in the representation of the nonlinear system by the NLDI model, and this feature is also one important contribution of this paper. Once the NLDI representation of the nonlinear system is obtained, the paper proposes the application of a linear control design method to this representation. The design is based on quadratic Lyapunov functions and formulated as search problem over a set of bilinear matrix inequalities (BMIs), which is solved using a two-step separation procedure that maps the BMIs into a set of corresponding linear matrix inequalities. Two numerical examples are given to demonstrate the effectiveness of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of designing linear functional observers for discrete time-delay systems with unknown-but-bounded disturbances in both the plant and the output is considered for the first time in this paper. A novel approach to design a minimum-order observer is proposed to guarantee that the observer error is ϵ-convergent, which means that the estimate converges robustly within an ϵ-bound of the true state. Conditions for the existence of this observer are first derived. Then, by utilising an extended Lyapunov-Krasovskii functional and the free-weighting matrix technique, a sufficient condition for ϵ-convergence of the observer error system is given. This condition is presented in terms of linear matrix inequalities with two parameters needed to be tuned, so that it can be efficiently solved by incorporating a two-dimensional search method into convex optimisation algorithms to obtain the smallest possible value for ϵ. Three numerical examples, including the well-known single-link flexible joint robotic system, are given to illustrate the feasibility and effectiveness of our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we address the problem of unknown input observer design, which simultaneously estimates state and unknown input, of a class of nonlinear discrete-time systems with time-delay. A novel approach to the state estimation problem of nonlinear systems where the nonlinearities satisfy the one-sided Lipschitz and quadratically inner-bounded conditions is proposed. This approach also allows us to reconstruct the unknown inputs of the systems. The nonlinear system is first transformed to a new system which can be decomposed into unknown-input-free and unknown-input-dependent subsystems. The estimation problem is then reduced to designing observer for the unknown-input-free subsystem. Rather than full-order observer design, in this paper, we propose observer design of reduced-order which is more practical and cost effective. By utilizing several mathematical techniques, the time-delay issue as well as the bilinear terms, which often emerge when designing observers for nonlinear discrete-time systems, are handled and less conservative observer synthesis conditions are derived in the linear matrix inequalities form. Two numerical examples are given to show the efficiency and high performance of our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a class of time-delay singular systems with Lipschitz non-linearities. A method of designing full-order observers for the systems is presented which can handle non-linearities with large-Lipschitz constants. The Lipschitz conditions are reformulated into linear parameter varying systems, then the Lyapunov–Krasovskii approach and the convexity principle are applied to study stability of the new systems. Furthermore, the observers design does not require the assumption of regularity for singular systems. In case the systems are non-singular, a reduced-order observers design is proposed instead. In both cases, synthesis conditions for the observers designs are derived in terms of linear matrix inequalities which can be solved efficiently by numerical methods. The efficiency of the obtained results is illustrated by two numerical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we address the problem of observer design for a class of nonlinear discrete-time systems in the presence of delays and unknown inputs. The nonlinearities studied in this work satisfy the one-sided Lipschitz and quadratically inner-bounded conditions which are more general than the traditional Lipschitz conditions. Both H∞ observer design and asymptotic observer design with reduced-order are considered. The designs are novel compared to other relevant nonlinear observer designs subject to time delays and disturbances in the literature. In order to deal with the time-delay issue as well as the bilinear terms which usually appear in the problem of designing observers for discrete-time systems, several mathematical techniques are utilized to deduce observer synthesis conditions in the linear matrix inequalities form. A numerical example is given to demonstrate the effectiveness and high performance of our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing delay-dependent functional observers for LTI systems with multiple known time-varying state delays and unknown time-varying input delays is studied. The input delays are arbitrary, but the state delays should be upper-bounded. In addition, two scenarios of slow-varying and fast-varying state delays are investigated. The results of the paper can also be considered as one of the first contributions considering unknown-input functional observer design for linear systems with multiple time-varying state delays. Based on the Lyapunov Krasovskii approach, delay-dependent sufficient conditions of the exponential stability of the observer in each scenario are established in terms of linear matrix inequalities. Because of using effective techniques, such as the descriptor transformation and an advanced weighted integral inequality, the proposed stability criteria can result in larger stability regions compared with the other papers that study functional observers for time-varying delay systems. Furthermore, to help with the design procedure, a genetic algorithm-based scheme is proposed to adjust a weighting matrix in the established linear matrix inequalities. Two numerical examples illustrate the design procedure and demonstrate the efficacy of the proposed observer in each scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the robust H∞ control for Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delay. By employing a new and tighter integral inequality and constructing an appropriate type of Lyapunov functional, delay-dependent stability criteria are derived for the control problem. Because neither any model transformation nor free weighting matrices are employed in our theoretical derivation, the developed stability criteria significantly improve and simplify the existing stability conditions. Also, the maximum allowable upper delay bound and controller feedback gains can be obtained simultaneously from the developed approach by solving a constrained convex optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

提出了一种新的模型直升机航向控制算法。针对具有模型不确定性的直升机航向线性模型,提出了一种具有自适应机制的最优保性能控制器。该控制策略通过引入自适应机制降低固定增益控制器所固有的保守性,并且控制器的反馈增益应用线性矩阵不等式(LMIs)方法解得。理论分析和数字仿真表明所设计的控制器具有良好的鲁棒稳定性能。