993 resultados para Linear chain
Resumo:
OBJECTIVE We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers. METHOD A total of 1,998 women and men participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) were followed for a median of 4.9 years. The associations between the proportion of plasma phospholipid long-chain n-3 PUFA and change in weight were investigated using mixed-effect linear regression. RESULTS The proportion of long-chain n-3 PUFA was not associated with change in weight. Among all participants, the 1-year weight change was -0.7 g per 1% point higher long-chain n-3 PUFA level (95% confidence interval: -20.7 to 19.3). The results when stratified by sex, age, or BMI groups were not systematically different. CONCLUSION The results of this study suggest that the proportion of long-chain n-3 PUFA in plasma phospholipids is not associated with subsequent change in body weight within the range of exposure in the general population.
Resumo:
We develop a mathematical programming approach for the classicalPSPACE - hard restless bandit problem in stochastic optimization.We introduce a hierarchy of n (where n is the number of bandits)increasingly stronger linear programming relaxations, the lastof which is exact and corresponds to the (exponential size)formulation of the problem as a Markov decision chain, while theother relaxations provide bounds and are efficiently computed. Wealso propose a priority-index heuristic scheduling policy fromthe solution to the first-order relaxation, where the indices aredefined in terms of optimal dual variables. In this way wepropose a policy and a suboptimality guarantee. We report resultsof computational experiments that suggest that the proposedheuristic policy is nearly optimal. Moreover, the second-orderrelaxation is found to provide strong bounds on the optimalvalue.
Resumo:
The propagation of a pulse in a nonlinear array of oscillators is influenced by the nature of the array and by its coupling to a thermal environment. For example, in some arrays a pulse can be speeded up while in others a pulse can be slowed down by raising the temperature. We begin by showing that an energy pulse (one dimension) or energy front (two dimensions) travels more rapidly and remains more localized over greater distances in an isolated array (microcanonical) of hard springs than in a harmonic array or in a soft-springed array. Increasing the pulse amplitude causes it to speed up in a hard chain, leaves the pulse speed unchanged in a harmonic system, and slows down the pulse in a soft chain. Connection of each site to a thermal environment (canonical) affects these results very differently in each type of array. In a hard chain the dissipative forces slow down the pulse while raising the temperature speeds it up. In a soft chain the opposite occurs: the dissipative forces actually speed up the pulse, while raising the temperature slows it down. In a harmonic chain neither dissipation nor temperature changes affect the pulse speed. These and other results are explained on the basis of the frequency vs energy relations in the various arrays
Resumo:
This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.
Resumo:
The present work deals with the complexation of Schiff bases of aroylhydrazines with various transition metal ions. The hydrazone systems selected for study have long 7I:-delocalized chain in the ligand molecule itself, which get intensified due to metal-to-ligand or ligand-to-metal charge transfer excitations upon coordination. Complexation with metal ions like copper, nickel, cobalt, manganese, iron, zinc and cadmium are tried. Various spectral techniques are employed for characterization. The structures of some complexes have been well established by single crystal X-ray diffraction studies. The nonIinaer optical studies of the ligands and complexes synthesized have been studied by hyper-Rayleigh scattering technique.The work is presented in seven chapters and the last one deals with summary and conclusion. One of the hydrazone system selected for study proved that it could give rise to polymeric metal complexes. Some of the copper, nickel, zinc and cadmium complexes showed non-linear optical activity. The NLO studies of manganese and iron showed negative result, may be due to the inversion centre of symmetry within the molecular lattice.
Resumo:
The linear viscoelastic (LVE) spectrum is one of the primary fingerprints of polymer solutions and melts, carrying information about most relaxation processes in the system. Many single chain theories and models start with predicting the LVE spectrum to validate their assumptions. However, until now, no reliable linear stress relaxation data were available from simulations of multichain systems. In this work, we propose a new efficient way to calculate a wide variety of correlation functions and mean-square displacements during simulations without significant additional CPU cost. Using this method, we calculate stress−stress autocorrelation functions for a simple bead−spring model of polymer melt for a wide range of chain lengths, densities, temperatures, and chain stiffnesses. The obtained stress−stress autocorrelation functions were compared with the single chain slip−spring model in order to obtain entanglement related parameters, such as the plateau modulus or the molecular weight between entanglements. Then, the dependence of the plateau modulus on the packing length is discussed. We have also identified three different contributions to the stress relaxation: bond length relaxation, colloidal and polymeric. Their dependence on the density and the temperature is demonstrated for short unentangled systems without inertia.
Resumo:
Monomer-sequence information in synthetic copolyimides can be recognised by tweezer-type molecules binding to adjacent triplet-sequences on the polymer chains. In the present paper different tweezer-molecules are found to have different sequence-selectivities, as demonstrated in solution by 1H NMR spectroscopy and in the solid state by single crystal X-ray analyses of tweezer-complexes with linear and macrocyclic oligo-imides. This work provides clear-cut confirmation of polyimide chain-folding and adjacent-tweezer-binding. It also reveals a new and entirely unexpected mechanism for sequence-recognition which, by analogy with a related process in biomolecular information processing, may be termed "frameshift-reading". The ability of one particular tweezer-molecule to detect, with exceptionally high sensitivity, long-range sequence-information in chain-folding aromatic copolyimides, is readily explained by this novel process.
Resumo:
A well defined structure is available for the carboxyl half of the cellular prion protein (PrPc), while the structure of the amino terminal half of the molecule remains ill defined. The unstructured nature of the polypeptide has meant that relatively few of the many antibodies generated against PrPc recognise this region. To circumvent this problem, we have used a previously characterised and well expressed fragment derived from the amino terminus of PrPc as bait for panning a single chain antibody phage (scFv-P) library. Using this approach, we identified and characterised I predominant and 3 additional scFv-Ps that contained different V-H and V-L sequences and that bound specifically to the PrPc target. Epitope mapping revealed that all scFv-Ps recognised linear epitopes between PrPc residues 76 and 156. When compared with existing monoclonal antibodies (MAb), the binding of the scFvs was significantly different in that high level binding was evident on truncated forms of PrPc that reacted poorly or not at all with several pre-existing MAbs. These data suggest that the isolated scFv-Ps bind to novel epitopes within the aminocentral region of PrPc. In addition, the binding of MAbs to known linear epitopes within PrPc depends strongly on the endpoints of the target PrPc fragment used. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Analyses of high-density single-nucleotide polymorphism (SNP) data, such as genetic mapping and linkage disequilibrium (LD) studies, require phase-known haplotypes to allow for the correlation between tightly linked loci. However, current SNP genotyping technology cannot determine phase, which must be inferred statistically. In this paper, we present a new Bayesian Markov chain Monte Carlo (MCMC) algorithm for population haplotype frequency estimation, particulary in the context of LD assessment. The novel feature of the method is the incorporation of a log-linear prior model for population haplotype frequencies. We present simulations to suggest that 1) the log-linear prior model is more appropriate than the standard coalescent process in the presence of recombination (>0.02cM between adjacent loci), and 2) there is substantial inflation in measures of LD obtained by a "two-stage" approach to the analysis by treating the "best" haplotype configuration as correct, without regard to uncertainty in the recombination process. Genet Epidemiol 25:106-114, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
A homologous series of macrocyclic oligoamides has been prepared in high yield by reaction of isophthaloyl chloride with m-phenylenediamine under pseudo-high-dilution conditions. The products were characterized by infrared and H-1 NMR spectroscopies, matrix assisted laser desorption-ionization time-of-flight mass spectrometry, and gel permeation chromatography (GPC). A series of linear oligomers was prepared for comparison. The macrocycles ranged in size from the cyclic trimer up to at least the cyclic nonamer (90 ring atoms). The same homologous series of macrocyclic oligomers was prepared in high yield by the cyclodepolymerization of poly(m-phenylene isophthalamide) (Nomex). Cyclodepolymerization was best achieved by treating a 1% w/v solution of the polymer in dimethyl sulfoxide containing calcium chloride or lithium chloride with 3-4 mol % of sodium hydride or the sodium salt of benzanilide at 150 degreesC for 70 h. Treatment of a concentrated solution of the macrocyclic oligomers (25% w/v) with 4 mol % of sodium hydride or the sodium salt of benzanilide in a solution of lithium chloride in dimethyl sulfoxide at 170 degreesC for 6 h resulted in efficient entropically driven ring-opening polymerizations to give poly(m-phenylene isophthalamide), characterized by infrared and H-1 NMR spectroscopies and by GPC. The molecular weights obtained were comparable with those of the commercial polymer.
Resumo:
Novel, linear, soluble, high-molecular-weight, film-forming polymers and copolymers in which main-chain crown ether units alternate with aliphatic (C-10-C-16) units have been obtained for the first time from aromatic electrophilic substitution reactions of crown ethers by aliphatic dicarboxylic acids followed by reduction of the carbonyl groups. The crown ether unit is dibenzo-18-crown-6, dibenzo-21-crown-7, dibenzo-24-crown-8, or dibenzo-30-crown-10; the aliphatic spacer is derived from a dicarboxylic acid (sebacic, 1,12-dodecanedicarboxylic, hexadecanedioic or 1,4-phenylenediacetic acids). The reactions were performed at 35 degrees C in a mixture of methanesulfonic acid (MSA) with phosphorus pentoxide, 12:1 (w/w), (Eaton's reagent). The carbonyl groups in the polyketones obtained were completely reduced to methylene linkages by treatment at room temperature with triethylsilane in a mixture of trifluoroacetic acid and dichloromethane. Polymers containing in the main chain crown ethers alternating with oxyindole fragments were prepared by one-pot condensation of crown ethers with isatin in a medium of Eaton's reagent. A possible reaction mechanism is suggested. According to IR and NMR analyses, the polyacylation reactions lead to the formation of isomeric (syn/anti-substituted) crown ether units in the main chain. The polymers obtained were soluble in the common organic solvents, and flexible transparent films could be cast from the solutions. DSC and X-ray studies of the polymers with "symmetrical" crown ethers reveal the presence of the endotherms corresponding to the supramolecular assemblies.
Resumo:
Chain in both its forms - common (or stud-less) and stud-link - has many engineering applications. It is widely used as a component in the moorings of offshore floating systems, where its ruggedness and corrosion resistance make it an attractive choice. Chain exhibits some interesting behaviour in that when straight and subject to an axial load it does not twist or generate any torque, but if twisted or loaded when in a twisted condition it behaves in a highly non-linear manner, with the torque dependent upon the level of twist and axial load. Clearly an understanding of the way in which chains may behave and interact with other mooring components (such as wire rope, which also exhibits coupling between axial load and generated torque) when they are in service is essential. However, the sizes of chain that are in use in offshore moorings (typical bar diameters are 75 mm and greater) are too large to allow easy testing. This paper, which is in two parts, aims to address the issues and considerations relevant to torque in mooring chain. The first part introduces a frictionless theory that predicts the resultant torques and 'lift' in the links as non-dimensionalized functions of the angle of twist. Fortran code is presented in an Appendix, which allows the reader to make use of the analysis. The second part of the paper presents results from experimental work on both stud-less (41 mm) and stud-link (20.5 and 56 mm) chains. Torsional data are presented in both 'constant twist' and 'constant load' forms, as well as considering the lift between the links.
Resumo:
Chain is a commonly used component in offshore moorings where its ruggedness and corrosion resistance make it an attractive choice. Another attractive property is that a straight chain is inherently torque balanced. Having said this, if a chain is loaded in a twisted condition, or twisted when under load, it exhibits highly non-linear torsional behaviour. The consequences of this behaviour can cause handling difficulties or may compromise the integrity of the mooring system, and care must be taken to avoid problems for both the chain and any components to which it is connected. Even with knowledge of the potential problems, there will always be occasions where, despite the utmost care, twist is unavoidable. Thus it is important for the engineer to be able to determine the effects. A frictionless theory has been developed in Part 1 of the paper that may be used to predict the resultant torques and movement or 'lift' in the links as non-dimensional functions of the angle of twist. The present part of the paper describes a series of experiments undertaken on both studless and stud-link chain to allow comparison of this theoretical model with experimental data. Results are presented for the torsional response and link lift for 'constant twist' and 'constant load' type tests on chains of three different link sizes.
Resumo:
We previously reported sequence determination of neutral oligosaccharides by negative ion electrospray tandem mass spectrometry on a quadrupole-orthogonal time-of-flight instrument with high sensitivity and without the need of derivatization. In the present report, we extend our strategies to sialylated oligosaccharides for analysis of chain and blood group types together with branching patterns. A main feature in the negative ion mass spectrometry approach is the unique double glycosidic cleavage induced by 3-glycosidic substitution, producing characteristic D-type fragments which can be used to distinguish the type 1 and type 2 chains, the blood group related Lewis determinants, 3,6-disubstituted core branching patterns, and to assign the structural details of each of the branches. Twenty mono- and disialylated linear and branched oligosaccharides were used for the investigation, and the sensitivity achieved is in the femtomole range. To demonstrate the efficacy of the strategy, we have determined a novel complex disialylated and monofucosylated tridecasaccharide that is based on the lacto-N-decaose core. The structure and sequence assignment was corroborated by :methylation analysis and H-1 NMR spectroscopy.
Resumo:
In this paper we deal with performance analysis of Monte Carlo algorithm for large linear algebra problems. We consider applicability and efficiency of the Markov chain Monte Carlo for large problems, i.e., problems involving matrices with a number of non-zero elements ranging between one million and one billion. We are concentrating on analysis of the almost Optimal Monte Carlo (MAO) algorithm for evaluating bilinear forms of matrix powers since they form the so-called Krylov subspaces. Results are presented comparing the performance of the Robust and Non-robust Monte Carlo algorithms. The algorithms are tested on large dense matrices as well as on large unstructured sparse matrices.