957 resultados para Leukemia, Myelogenous, Chronic, BCR-ABL Positive -- genetics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the face of competing first-line treatment options for CML, early prediction of prognosis on imatinib is desirable to assure favorable survival or otherwise consider the use of a second-generation tyrosine kinase inhibitor (TKI). A total of 1303 newly diagnosed imatinib-treated patients (pts) were investigated to correlate molecular and cytogenetic response at 3 and 6 months with progression-free and overall survival (PFS, OS). The persistence of BCR-ABL transcript levels >10% according to the international scale (BCR-ABL(IS)) at 3 months separated a high-risk group (28% of pts; 5-year OS: 87%) from a group with >1-10% BCR-ABL(IS) (41% of pts; 5-year OS: 94%; P=0.012) and from a group with 1% BCR-ABL(IS) (31% of pts; 5-year OS: 97%; P=0.004). Cytogenetics identified high-risk pts by >35% Philadelphia chromosome-positive metaphases (Ph+, 27% of pts; 5-year OS: 87%) compared with 35% Ph+ (73% of pts; 5-year OS: 95%; P=0.036). At 6 months, >1% BCR-ABL(IS) (37% of pts; 5-year OS: 89%) was associated with inferior survival compared with 1% (63% of pts; 5-year OS: 97%; P<0.001) and correspondingly >0% Ph+ (34% of pts; 5-year OS: 91%) compared with 0% Ph+ (66% of pts; 5-year OS: 97%; P=0.015). Treatment optimization is recommended for pts missing these landmarks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) requires strict daily compliance with oral medication and regular blood and bone marrow control tests. The objective was to evaluate CML patients' perceptions about the disease, their access to information regarding the diagnosis, monitoring and treatment, adverse effects and associations of these variables with patients' demographics, region and healthcare access. Prospective cross-sectional study among CML patients registered with the Brazilian Lymphoma and Leukemia Association (ABRALE). CML patients receiving treatment through the public healthcare system were interviewed by telephone. Among 1,102 patients interviewed, the symptoms most frequently leading them to seek medical care were weakness or fatigue. One third were diagnosed by means of routine tests. The time that elapsed between first symptoms and seeking medical care was 42.28 ± 154.21 days. Most patients had been tested at least once for Philadelphia chromosome, but 43.2% did not know the results. 64.8% had had polymerase chain reaction testing for the BCR/ABL gene every three months. 47% believed that CML could be controlled, but 33.1% believed that there was no treatment. About 24% reported occasionally stopping their medication. Imatinib was associated with nausea, cramps and muscle pain. Self-reported treatment adherence was significantly associated with normalized blood count, and positively associated with imatinib. There is a lack of information or understanding about disease monitoring tools among Brazilian CML patients; they are diagnosed quickly and have good access to treatment. Correct comprehension of CML control tools is impaired in Brazilian patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nilotinib, a novel tyrosine kinase inhibitor (TKI) that inhibits BCR-ABL, the stem cell factor receptor (KIT), and platelet-derived growth factor receptor-alpha (PDGFRα), is approved for the treatment of patients with newly diagnosed Philadelphia chromosome-positive chronic myelogenous leukemia (CML) and those with CML that is imatinib-resistant or -intolerant. Due to its potent inhibition of KIT and PDGFRα--the two tyrosine kinases that are the central oncogenic mechanisms of gastrointestinal stromal tumors (GIST)--nilotinib also has been investigated for potential efficacy and safety in patients with GIST who have progressed on other approved treatments. Initial results have been encouraging, as nilotinib has demonstrated clinical efficacy and safety in a phase I trial as either a single agent or in combination with imatinib, as well as in heavily pretreated patients with GIST in a compassionate use program. In addition, the phase III trial of nilotinib versus best supportive care (with or without a TKI at the investigator's discretion) indicated that nilotinib may have efficacy in some third-line patients. Furthermore, the Evaluating Nilotinib Efficacy and Safety in Clinical Trials (ENEST g1 trial), a phase III randomized, open-label study comparing the safety and efficacy of imatinib versus nilotinib in the first-line treatment of patients with GIST, is currently under way. Other studies with nilotinib either have been initiated or are in development. Based on published and accruing clinical data, nilotinib shows potential as a new drug in the clinician's armamentarium for the management of GIST.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: INTRODUCTION: In Brazil, patients with chronic myeloid leukemia (CML) in the chronic phase were not given first-line imatinib treatment until 2008. Therefore, there was a long period of time between diagnosis and the initiation of imatinib therapy for many patients. This study aims to compare the major molecular remission (MMR) rates of early versus late imatinib therapy in chronic phase CML patients. METHODS: Between May 2002 and November 2007, 44 patients with chronic phase CML were treated with second-line imatinib therapy at the Hematology Unit of the Ophir Loyola Hospital (Belém, Pará, Brazil). BCR-ABL transcript levels were measured at approximately six-month intervals using quantitative polymerase chain reaction. RESULTS: The early treatment group presented a 60% probability of achieving MMR, while the probability for those patients who received late treatment was 40%. The probability of either not achieving MMR within one year of the initiation of imatinib therapy or losing MMR was higher in patients who received late treatment (79%), compared with patients who received early treatment (21%, odds ratio=5.75, P=0.012). The probability of maintaining MMR at 30 months of treatment was 80% in the early treatment group and 44% in the late treatment group (P=0.0005). CONCLUSIONS: For CML patients in the chronic phase who were treated with second-line imatinib therapy, the probability of achieving and maintaining MMR was higher in patients who received early treatment compared with those patients for whom the time interval between diagnosis and initiation of imatinib therapy was longer than one year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human p53 tumor suppressor, known as the “guardian of the genome”, is one of the most important molecules in human cancers. One mechanism for suppressing p53 uses its negative regulator, MDM2, which modulates p53 by binding directly to and decreasing p53 stability. In testing novel therapeutic approaches activating p53, we investigated the preclinical activity of the MDM2 antagonist, Nutlin-3a, in Philadelphia positive (Ph+) and negative (Ph-) leukemic cell line models, and primary B-Acute lymphoblastic leukemia (ALL) patient samples. In this study we demonstrated that treatment with Nutlin-3a induced grow arrest and apoptosis mediated by p53 pathway in ALL cells with wild-type p53, in time and dose-dependent manner. Consequently, MDM2 inhibitor caused an increase of pro-apoptotic proteins and key regulators of cell cycle arrest. The dose-dependent reduction in cell viability was confirmed in primary blast cells from Ph+ ALL patients with the T315I Bcr-Abl kinase domain mutation. In order to better elucidate the implications of p53 activation and to identify biomarkers of clinical activity, gene expression profiling analysis in sensitive cell lines was performed. A total of 621 genes were differentially expressed (p < 0.05). We found a strong down-regulation of GAS41 (growth-arrest specific 1 gene) and BMI1 (a polycomb ring-finger oncogene) (fold-change -1.35 and -1.11, respectively; p-value 0.02 and 0.03, respectively) after in vitro treatment as compared to control cells. Both genes are repressors of INK4/ARF and p21. Given the importance of BMI in the control of apoptosis, we investigated its pattern in treated and untreated cells, confirming a marked decrease after exposure to MDM2 inhibitor in ALL cells. Noteworthy, the BMI-1 levels remained constant in resistant cells. Therefore, BMI-1 may be used as a biomarker of response. Our findings provide a strong rational for further clinical investigation of Nutlin-3a in Ph+ and Ph-ALL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well established that the chimeric Bcr-Abl oncoprotein resulting from fusing 3$\sp\prime$ ABL sequences on chromosome 9 to 5$\sp\prime$ BCR sequences on chromosome 22 is the primary cause of Philadelphia chromosome-positive (Ph$\sp1$) leukemias. Although it is clear that the cis-Bcr sequence present within Bcr-Abl is able to activate the tyrosine kinase activity and F-actin binding capacity of Bcr-Abl which is critical for the transforming ability of BCR-ABL, the biological role of normal BCR gene product (P160 BCR) remains largely unknown. The previous finding by our lab that P160 BCR forms stable complexes with Bcr-Abl oncoprotein in Ph$\sp1$-positive leukemic cells implicated P160 BCR in the pathogenesis of Ph$\sp1$-positive leukemias. Here, we demonstrated that P160 BCR physically interacts with P210 BCR-ABL and become tyrosine phosphorylated when co-expressed with P210 BCR-ABL in COS1 cells while no tyrosine phosphorylation of P160 BCR can be detected when it is expressed alone. The results suggest that P160 BCR is a target for the Bcr-Abl tyrosine kinase. Although we were unable to detect stable physical interaction between P160 BCR and P145 c-ABL (Ib) in COS1 cells overexpressing both proteins, P160 BCR was phosphorylated on tyrosine residues when co-expressed with activated tyrosine kinase of P145 c-ABL (Ib). In addition, studies of tyrosine phosphorylation of BCR deletion mutants and 2-dimensional tryptic mapping of in vitro phosphorylated wild type and mutant (tyrosine to phenylalanine) Bcr-Abl indicated that tyrosine 177, 283 and 360 of Bcr represent some of the phosphorylation sites. Even though the significance of tyrosine phosphorylation of residues 283 and 360 of Bcr has not been determined, tyrosine phosphorylation of residue 177 within Bcr-Abl has been reported to be critical for its interaction with Grb2 molecule and subsequent activation of Ras signaling pathway. Here, we further demonstrated that tyrosine 177 phosphorylated P160 BCR is also able to bind to Grb2 molecule suggesting the role of P160 BCR in the Ras signaling pathway.^ Surprisingly, using 3$\sp\prime$ BCR antisense oligonucleotide to reduce the expression of P160 BCR without interfering with the expression of BCR-ABL resulted in increased growth or survival of B15 cells and M3.16 cells expressing either P185 BCR-ABL or P210 BCR-ABL respectively. The results provided strong arguments that P160 BCR may function as a negative regulator for cell growth.^ Considering all these results, we hypothesize that P160 BCR negatively regulate cell growth and tyrosine phosphorylation of P160 BCR turns off its growth suppressor function and turns on its growth stimulatory function. We further speculate that Bcr-Abl oncoprotein in leukemia cells stably interacts with and constitutively phosphorylates portions of P160 BCR converting it into a growth stimulatory state. In normal cells, the growth suppressor effects of P160 BCR could only be transiently and conditionally switched to growth stimulatory action by a strictly regulated cellular tyrosine kinase such as c-ABL. The model will be further discussed in the text. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a case of a 47-year-old man diagnosed with chronic lymphocytic leukemia (CLL) with two extra copies of chromosome 8. Classical cytogenetic analysis by the immunostimulatory combination of DSP30 and interleukin 2 showed tetrasomy of chromosome 8 in 60% of the metaphase cells (48,XY,+8,+8[12]/46,XY[8]). Spectral karyotype analysis confirmed the abnormality previously seen by G banding. Additionally, interphase fluorescence in situ hybridization using an LSI CEP 8 probe performed on peripheral blood cells without any stimulant agent showed tetrasomy of chromosome 8 in 54% of analyzed cells (108 of 200). To our knowledge, tetrasomy 8 as the sole chromosomal abnormality in CLL has not been previously described. The prognostic significance of tetrasomy 8 in CLL remains to be elucidated. However, the patient has been followed up in the outpatient hospital since 2004 without any therapeutic intervention and has so far remained stable. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adult B-cell acute lymphoblastic leukemia remains a major therapeutic challenge, requiring a better characterization of the molecular determinants underlying disease progression and resistance to treatment. Here, using a phospho-flow cytometry approach we show that adult diagnostic B-cell acute lymphoblastic leukemia specimens display PI3K/Akt pathway hyperactivation, irrespective of their BCR-ABL status and despite paradoxically high basal expression of PTEN, the major negative regulator of the pathway. Protein kinase CK2 is known to phosphorylate PTEN thereby driving PTEN protein stabilization and concomitant PTEN functional inactivation. In agreement, we found that adult B-cell acute lymphoblastic leukemia samples show significantly higher CK2 kinase activity and lower PTEN lipid phosphatase activity than healthy controls. Moreover, the clinical-grade CK2 inhibitor CX-4945 (Silmitasertib) reversed PTEN levels in leukemia cells to those observed in healthy controls, and promoted leukemia cell death without significantly affecting normal bone marrow cells. Our studies indicate that CK2-mediated PTEN posttranslational inactivation, associated with PI3K/Akt pathway hyperactivation, are a common event in adult B-cell acute lymphoblastic leukemia and suggest that CK2 inhibition may constitute a valid, novel therapeutic tool in this malignancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase and a nuclease that restricts HIV-1 in noncycling cells. Germ-line mutations in SAMHD1 have been described in patients with Aicardi-Goutières syndrome (AGS), a congenital autoimmune disease. In a previous longitudinal whole genome sequencing study of chronic lymphocytic leukemia (CLL), we revealed a SAMHD1 mutation as a potential founding event. Here, we describe an AGS patient carrying a pathogenic germ-line SAMHD1 mutation who developed CLL at 24 years of age. Using clinical trial samples, we show that acquired SAMHD1 mutations are associated with high variant allele frequency and reduced SAMHD1 expression and occur in 11% of relapsed/refractory CLL patients. We provide evidence that SAMHD1 regulates cell proliferation and survival and engages in specific protein interactions in response to DNA damage. We propose that SAMHD1 may have a function in DNA repair and that the presence of SAMHD1 mutations in CLL promotes leukemia development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Within the frame of a twinning programme with Nicaragua, The La Mascota project, we evaluated in our study the contribution of cytogenetic characterization of acute lymphoblastic leukemia (ALL) as prognostic factor compared to clinical, morphological, and immunohistochemical parameters. METHODS: All patients with ALL treated at the only cancer pediatric hospital in Nicaragua during 2006 were studied prospectively. Diagnostic immunophenotyping was performed locally and bone marrow or blood samples were sent to the cytogenetic laboratory of Zurich for fluorescence in situ hybridization (FISH) analysis and G-banding. RESULTS: Sixty-six patients with ALL were evaluated. Their mean age at diagnosis was 7.3 years, 31.8% were >or=10 years. Thirty-four patients (51.5%) presented with hyperleucocytosis >or=50 x 10(9)/L, 45 (68.2%) had hepatosplenomegaly. Immunophenotypically 63/66 patients (95%) had a B-precursor, 2 (3%) a T- and 1 (1.5%) a B-mature ALL. FISH analysis demonstrated a TEL/AML1 fusion in 9/66 (14%), BCR/ABL fusion in 1 (1.5%), MLL rearrangement in 2 (3.1%), iAMP21 in 2 (3.1%), MYC rearrangement in 1 (1.5%), and high-hyperdiploidy in 16 (24%). All patients but two with TEL/AML1 fusion and high-hyperdiploidy were clinically and hematologically in the standard risk group whereas those with poor cytogenetic factors had clinical high-risk features and were treated intensively. CONCLUSIONS: Compared to Europe, the ALL population in Nicaragua is older, has a higher proportion of poor prognostic clinical and hematological features and receives more intensive treatment, while patients with TEL/AML1 translocations and high-hyperdiploidy are clinically in the standard risk group. Cytogenetics did not contribute as an additional prognostic factor in this setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Similar to human chronic lymphocytic leukemia (CLL), the de novo New Zealand Black (NZB) mouse model has a genetically determined age-associated increase in malignant B-1 clones and decreased expression of microRNAs miR-15a and miR-16 in B-1 cells. In the present study, lentiviral vectors were employed in vivo to restore miR-15a/16, and both the short-term single injection and long-term multiple injection effects of this delivery were observed in NZB. Control lentivirus without the mir-15a/16 sequence was used for comparison. We found that in vivo lentiviral delivery of mir-15a/16 increased miR-15a/16 expression in cells that were transduced (detected by GFP expression) and in sera when compared with control lentivirus treatment. More importantly, mice treated with the miR-expressing lentivirus had decreased disease. The lentivirus had little systemic toxicity while preferentially targeting B-1 cells. Short-term effects on B-1 cells were direct effects, and only malignant B-1 cells transduced with miR-15a/16 lentivirus had decreased viability. In contrast, long-term studies suggested both direct and indirect effects resulting from miR-15a/16 lentivirus treatment. A decrease in B-1 cells was found in both the transduced and non-transduced populations. Our data support the potential use of systemic lentiviral delivery of miR-15a/16 to ameliorate disease manifestations of CLL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone destruction is a prominent feature of multiple myeloma, but conflicting data exist on the expression and pathophysiologic involvement of the bone remodeling ligand RANKL in this disease and the potential therapeutic benefits of its targeted inhibition. Here, we show that RANKL is expressed by primary multiple myeloma and chronic lymphocytic leukemia (CLL) cells, whereas release of soluble RANKL was observed exclusively with multiple myeloma cells and was strongly influenced by posttranscriptional/posttranslational regulation. Signaling via RANKL into multiple myeloma and CLL cells induced release of cytokines involved in disease pathophysiology. Both the effects of RANKL on osteoclastogenesis and cytokine production by malignant cells could be blocked by disruption of RANK-RANKL interaction with denosumab. As we aimed to combine neutralization of RANKL with induction of antibody-dependent cellular cytotoxicity of natural killer (NK) cells against RANKL-expressing malignant cells and as denosumab does not stimulate NK reactivity, we generated RANK-Fc fusion proteins with modified Fc moieties. The latter displayed similar capacity compared with denosumab to neutralize the effects of RANKL on osteoclastogenesis in vitro, but also potently stimulated NK cell reactivity against primary RANKL-expressing malignant B cells, which was dependent on their engineered affinity to CD16. Our findings introduce Fc-optimized RANK-Ig fusion proteins as attractive tools to neutralize the detrimental function of RANKL while at the same time potently stimulating NK cell antitumor immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Within the frame of a twinning programme with Nicaragua, The La Mascota project, we evaluated in our study the contribution of cytogenetic characterization of acute lymphoblastic leukemia (ALL) as prognostic factor compared to clinical, morphological, and immunohistochemical parameters. METHODS: All patients with ALL treated at the only cancer pediatric hospital in Nicaragua during 2006 were studied prospectively. Diagnostic immunophenotyping was performed locally and bone marrow or blood samples were sent to the cytogenetic laboratory of Zurich for fluorescence in situ hybridization (FISH) analysis and G-banding. RESULTS: Sixty-six patients with ALL were evaluated. Their mean age at diagnosis was 7.3 years, 31.8% were >or=10 years. Thirty-four patients (51.5%) presented with hyperleucocytosis >or=50 x 10(9)/L, 45 (68.2%) had hepatosplenomegaly. Immunophenotypically 63/66 patients (95%) had a B-precursor, 2 (3%) a T- and 1 (1.5%) a B-mature ALL. FISH analysis demonstrated a TEL/AML1 fusion in 9/66 (14%), BCR/ABL fusion in 1 (1.5%), MLL rearrangement in 2 (3.1%), iAMP21 in 2 (3.1%), MYC rearrangement in 1 (1.5%), and high-hyperdiploidy in 16 (24%). All patients but two with TEL/AML1 fusion and high-hyperdiploidy were clinically and hematologically in the standard risk group whereas those with poor cytogenetic factors had clinical high-risk features and were treated intensively. CONCLUSIONS: Compared to Europe, the ALL population in Nicaragua is older, has a higher proportion of poor prognostic clinical and hematological features and receives more intensive treatment, while patients with TEL/AML1 translocations and high-hyperdiploidy are clinically in the standard risk group. Cytogenetics did not contribute as an additional prognostic factor in this setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SummaryCanonical Wnt signaling is crucial for embryonic development and the homeostasis of certain adult tissues such as the gut and the skin. The role of canonical Wnt signaling in hematopoiesis is still debated. The expression of a dominant-active β-catenin in hematopoietic stem cells (HSCs) enhances the self-renewal capacity of HSCs but is detrimental for long-term hematopoiesis. In contrast, loss of function experiments show that absence of β- and γ-catenin does not impair steady-state hematopoiesis. It has been argued that the inducible deletion of β-catenin using the IFN-responsive Mx promoter may somehow influence stem cell fate. Herein we used the constitutive deletion of β-catenin specifically in hematopoietic cells to show that the absence of β- catenin, as well as γ-catenin deletion, does not impair normal hematopoiesis and self-renewal capacity of HSCs.Dysregulation of canonical Wnt signaling is causal for several types of cancer, including colon carcinoma or breast cancer. Recently, it was found that Wnt signal transduction was upregulated in certain leukemias. Based on these data, we have investigated whether β- and γ-catenin play a role for the induction of leukemias by oncogenic BCR-ABL translocation product. We show that the induction of B-ALL (B cell acute lymphocytic leukemia) is strongly reduced in the absence of γ-catenin, while the induction of CML (chronic myeloid leukemia) occurs at a normal rate. In the combined absence of β- and γ-catenin the induction of both CML and B-ALL is essentially blocked. Consistent with these data others have found that β-catenin is essential for the induction of CML by BCR-ABL.Collectively, we find that β- and γ-catenin are dispensable for normal hematopoiesis but essential for the development of BCR-ABL induced leukemias. These findings suggest that the canonical Wnt pathway may represent a promising target for the therapy of leukemia.RésuméLa voie de signalisation canonique Wnt est essentielle pour le développement embryonnaire ainsi que l'homéostasie de certains tissus adultes, comme les intestins et la peau. Le rôle de la voie canonique Wnt pour l'hématopoïèse est encore incertain. D'un coté l'expression d'une forme active de β-catenine dans les cellules souches de la moelle augmente leur potentiel d'auto- renouvellement mais est préjudiciable pour l'hématopoïèse à long terme. Par contre, l'absence de β- et γ-catenine n'empêche pas le déroulement normal de l'hématopoïèse. La façon dont est supprimée β-catenine, en utilisant le promoteur IFN-inductible Mx, pourrait influencer le sort des cellules souches. Ici nous détruisons β-catenine spécifiquement dans les cellules hématopoïétiques de manière constitutive et montrons que, en combinaison avec l'absence de γ-catenine, l'absence de β-catenine n'affecte pas le déroulement normal de l'hématopoïèse et la capacité des cellules souches de la moelle à se renouveler.Plusieurs sortes de cancers, comme celui du colon ou du sein, sont parfois dus à une dérégulation de la voie canonique Wnt. Récemment, certaines leucémies ont présenté une activation du signal Wnt. A partir de ces données, nous avons examiné si β- et γ-catenine jouent un rôle dans l'induction des leucémies causées par le produit de translocation BCR-ABL. Nous avons montré que l'induction de la leucémie aiguë lymphoïde de cellules Β (LAL-B) est grandement diminuée en l'absence de γ-catenin, alors que l'induction de la leucémie myéloïde chronique (LMC) n'est pas affectée. En l'absence des deux catenines, l'induction des deux leucémies LAL-B et LMC est presque complètement bloquée. En confirmation de nos données, un autre groupe a montré que β-catenine est essentielle pour le développement de la LMC. Ensemble, ces données nous montrent que β- et γ-catenine ne sont pas nécessaires pour l'hématopoïèse normale, mais essentielle pour le développement des leucémies induites par BCR-ABL. Cela suggère que la voie de signalisation canonique Wnt est une cible prometteuse pour de futures thérapies.