895 resultados para Least Squares Problem
Resumo:
The present study reports an application of the searching combination moving window partial least squares (SCMWPLS) algorithm to the determination of ethenzamide and acetoaminophen in quaternary powdered samples by near infrared (NIR) spectroscopy. Another purpose of the study was to examine the instrumentation effects of spectral resolution and signal-to-noise ratio of the Buchi NIRLab N-200 FT-NIR spectrometer equipped with an InGaAs detector. The informative spectral intervals of NIR spectra of a series of quaternary powdered mixture samples were first located for ethenzamide and acetoaminophen by use of moving window partial least squares regression (MWPLSR). Then, these located spectral intervals were further optimised by SCMWPLS for subsequent partial least squares (PLS) model development. The improved results are attributed to both the less complex PLS models and to higher accuracy of predicted concentrations of ethenzamide and acetoaminophen in the optimised informative spectral intervals that are featured by NIR bands. At the same time, SCMWPLS is also demonstrated as a viable route for wavelength selection.
Resumo:
The use of least-squres polynomial smoothing in ICP-AES is discussed and a method of points insertion into spectral scanning intervals is proposed in the present paper. Optimal FWHM/SR ratio can be obtained, and distortion of smoothed spectra can be avoided by use of the recommended method.
Resumo:
This paper provides a root-n consistent, asymptotically normal weighted least squares estimator of the coefficients in a truncated regression model. The distribution of the errors is unknown and permits general forms of unknown heteroskedasticity. Also provided is an instrumental variables based two-stage least squares estimator for this model, which can be used when some regressors are endogenous, mismeasured, or otherwise correlated with the errors. A simulation study indicates that the new estimators perform well in finite samples. Our limiting distribution theory includes a new asymptotic trimming result addressing the boundary bias in first-stage density estimation without knowledge of the support boundary. © 2007 Cambridge University Press.
Resumo:
This paper theoretically analysis the recently proposed "Extended Partial Least Squares" (EPLS) algorithm. After pointing out some conceptual deficiencies, a revised algorithm is introduced that covers the middle ground between Partial Least Squares and Principal Component Analysis. It maximises a covariance criterion between a cause and an effect variable set (partial least squares) and allows a complete reconstruction of the recorded data (principal component analysis). The new and conceptually simpler EPLS algorithm has successfully been applied in detecting and diagnosing various fault conditions, where the original EPLS algorithm did only offer fault detection.