987 resultados para Learning path
Resumo:
The hypothesis that the same educational objective, raised as cooperative or collaborative learning in university teaching does not affect students’ perceptions of the learning model, leads this study. It analyses the reflections of two students groups of engineering that shared the same educational goals implemented through two different methodological active learning strategies: Simulation as cooperative learning strategy and Problem-based Learning as a collaborative one. The different number of participants per group (eighty-five and sixty-five, respectively) as well as the use of two active learning strategies, either collaborative or cooperative, did not show differences in the results from a qualitative perspective.
Resumo:
The power of computer game technology is currently being harnessed to produce “serious games”. These “games” are targeted at the education and training marketplace, and employ various key game-engine components such as the graphics and physics engines to produce realistic “digital-world” simulations of the real “physical world”. Many approaches are driven by the technology and often lack a consideration of a firm pedagogical underpinning. The authors believe that an analysis and deployment of both the technological and pedagogical dimensions should occur together, with the pedagogical dimension providing the lead. This chapter explores the relationship between these two dimensions, and explores how “pedagogy may inform the use of technology”, how various learning theories may be mapped onto the use of the affordances of computer game engines. Autonomous and collaborative learning approaches are discussed. The design of a serious game is broken down into spatial and temporal elements. The spatial dimension is related to the theories of knowledge structures, especially “concept maps”. The temporal dimension is related to “experiential learning”, especially the approach of Kolb. The multi-player aspect of serious games is related to theories of “collaborative learning” which is broken down into a discussion of “discourse” versus “dialogue”. Several general guiding principles are explored, such as the use of “metaphor” (including metaphors of space, embodiment, systems thinking, the internet and emergence). The topological design of a serious game is also highlighted. The discussion of pedagogy is related to various serious games we have recently produced and researched, and is presented in the hope of informing the “serious game community”.
Resumo:
In this thesis we discuss in what ways computational logic (CL) and data science (DS) can jointly contribute to the management of knowledge within the scope of modern and future artificial intelligence (AI), and how technically-sound software technologies can be realised along the path. An agent-oriented mindset permeates the whole discussion, by stressing pivotal role of autonomous agents in exploiting both means to reach higher degrees of intelligence. Accordingly, the goals of this thesis are manifold. First, we elicit the analogies and differences among CL and DS, hence looking for possible synergies and complementarities along 4 major knowledge-related dimensions, namely representation, acquisition (a.k.a. learning), inference (a.k.a. reasoning), and explanation. In this regard, we propose a conceptual framework through which bridges these disciplines can be described and designed. We then survey the current state of the art of AI technologies, w.r.t. their capability to support bridging CL and DS in practice. After detecting lacks and opportunities, we propose the notion of logic ecosystem as the new conceptual, architectural, and technological solution supporting the incremental integration of symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys- tem can be reified into actual software technology and extended towards many DS-related directions.
Resumo:
Machine Learning makes computers capable of performing tasks typically requiring human intelligence. A domain where it is having a considerable impact is the life sciences, allowing to devise new biological analysis protocols, develop patients’ treatments efficiently and faster, and reduce healthcare costs. This Thesis work presents new Machine Learning methods and pipelines for the life sciences focusing on the unsupervised field. At a methodological level, two methods are presented. The first is an “Ab Initio Local Principal Path” and it is a revised and improved version of a pre-existing algorithm in the manifold learning realm. The second contribution is an improvement over the Import Vector Domain Description (one-class learning) through the Kullback-Leibler divergence. It hybridizes kernel methods to Deep Learning obtaining a scalable solution, an improved probabilistic model, and state-of-the-art performances. Both methods are tested through several experiments, with a central focus on their relevance in life sciences. Results show that they improve the performances achieved by their previous versions. At the applicative level, two pipelines are presented. The first one is for the analysis of RNA-Seq datasets, both transcriptomic and single-cell data, and is aimed at identifying genes that may be involved in biological processes (e.g., the transition of tissues from normal to cancer). In this project, an R package is released on CRAN to make the pipeline accessible to the bioinformatic Community through high-level APIs. The second pipeline is in the drug discovery domain and is useful for identifying druggable pockets, namely regions of a protein with a high probability of accepting a small molecule (a drug). Both these pipelines achieve remarkable results. Lastly, a detour application is developed to identify the strengths/limitations of the “Principal Path” algorithm by analyzing Convolutional Neural Networks induced vector spaces. This application is conducted in the music and visual arts domains.
Resumo:
Recent experiments have revealed the fundamental importance of neuromodulatory action on activity-dependent synaptic plasticity underlying behavioral learning and spatial memory formation. Neuromodulators affect synaptic plasticity through the modification of the dynamics of receptors on the synaptic membrane. However, chemical substances other than neuromodulators, such as receptors co-agonists, can influence the receptors' dynamics and thus participate in determining plasticity. Here we focus on D-serine, which has been observed to affect the activity thresholds of synaptic plasticity by co-activating NMDA receptors. We use a computational model for spatial value learning with plasticity between two place cell layers. The D-serine release is CB1R mediated and the model reproduces the impairment of spatial memory due to the astrocytic CB1R knockout for a mouse navigating in the Morris water maze. The addition of path-constraining obstacles shows how performance impairment depends on the environment's topology. The model can explain the experimental evidence and produce useful testable predictions to increase our understanding of the complex mechanisms underlying learning.
Resumo:
Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.
Resumo:
PURPOSE: To determine the mean critical fusion frequency and the short-term fluctuation, to analyze the influence of age, gender, and the learning effect in healthy subjects undergoing flicker perimetry. METHODS: Study 1 - 95 healthy subjects underwent flicker perimetry once in one eye. Mean critical fusion frequency values were compared between genders, and the influence of age was evaluated using linear regression analysis. Study 2 - 20 healthy subjects underwent flicker perimetry 5 times in one eye. The first 3 sessions were separated by an interval of 1 to 30 days, whereas the last 3 sessions were performed within the same day. The first 3 sessions were used to investigate the presence of a learning effect, whereas the last 3 tests were used to calculate short-term fluctuation. RESULTS: Study 1 - Linear regression analysis demonstrated that mean global, foveal, central, and critical fusion frequency per quadrant significantly decreased with age (p<0.05).There were no statistically significant differences in mean critical fusion frequency values between males and females (p>0.05), with the exception of the central area and inferonasal quadrant (p=0.049 and p=0.011, respectively), where the values were lower in females. Study 2 - Mean global (p=0.014), central (p=0.008), and peripheral (p=0.03) critical fusion frequency were significantly lower in the first session compared to the second and third sessions. The mean global short-term fluctuation was 5.06±1.13 Hz, the mean interindividual and intraindividual variabilities were 11.2±2.8% and 6.4±1.5%, respectively. CONCLUSION: This study suggests that, in healthy subjects, critical fusion frequency decreases with age, that flicker perimetry is associated with a learning effect, and that a moderately high short-term fluctuation is expected.
Resumo:
PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Breast weight has great economic importance in poultry industry, and may be associated with other variables. This work aimed to estimate phenotypic correlations between performance (live body weight at 7 and 28 days, and at slaughter, and depth of the breast muscle measured by ultrasonography), carcass (eviscerated body weight and leg weight) and body composition (heart, liver and abdominal fat weight) traits in a broiler line, and quantify the direct and indirect influence of these traits on breast weight. Path analysis was used by expanding the matrix of partial correlation in coefficients which give the direct influence of one trait on another, regardless the effect of the other traits. The simultaneous maintenance of live body weight at slaughter and eviscerated body weight in the matrix of correlations might be harmful for statistical analysis involving systems of normal equations, like path analysis, due to the observed multicollinearity. The live body weight at slaughter and the depth of the breast muscle as measured by ultrasonography directly affected breast weight and were identified as the most responsible factors for the magnitude of the correlation coefficients obtained between the studied traits and breast weight. Individual pre-selection for these traits could favor an increased breast weight in the future reproducer candidates of this line if the broilers' environmental conditions and housing are maintained, since the live body weight at slaughter and the depth of breast muscle measured by ultrasonography were directly related to breast weight.
Resumo:
Classical and operant conditioning principles, such as the behavioral discrepancy-derived assumption that reinforcement always selects antecedent stimulus and response relations, have been studied at the neural level, mainly by observing the strengthening of neuronal responses or synaptic connections. A review of the literature on the neural basis of behavior provided extensive scientific data that indicate a synthesis between the two conditioning processes based mainly on stimulus control in learning tasks. The resulting analysis revealed the following aspects. Dopamine acts as a behavioral discrepancy signal in the midbrain pathway of positive reinforcement, leading toward the nucleus accumbens. Dopamine modulates both types of conditioning in the Aplysia mollusk and in mammals. In vivo and in vitro mollusk preparations show convergence of both types of conditioning in the same motor neuron. Frontal cortical neurons are involved in behavioral discrimination in reversal and extinction procedures, and these neurons preferentially deliver glutamate through conditioned stimulus or discriminative stimulus pathways. Discriminative neural responses can reliably precede operant movements and can also be common to stimuli that share complex symbolic relations. The present article discusses convergent and divergent points between conditioning paradigms at the neural level of analysis to advance our knowledge on reinforcement.
Resumo:
Two case studies are presented to describe the process of public school teachers authoring and creating chemistry simulations. They are part of the Virtual Didactic Laboratory for Chemistry, a project developed by the School of the Future of the University of Sao Paulo. the documental analysis of the material produced by two groups of teachers reflects different selection process for both themes and problem-situations when creating simulations. The study demonstrates the potential for chemistry learning with an approach that takes students' everyday lives into account and is based on collaborative work among teachers and researches. Also, from the teachers' perspectives, the possibilities of interaction that a simulation offers for classroom activities are considered.
Resumo:
Introduction. The ToLigado Project - Your School Interactive Newspaper is an interactive virtual learning environment conceived, developed, implemented and supported by researchers at the School of the Future Research Laboratory of the University of Sao Paulo, Brazil. Method. This virtual learning environment aims to motivate trans-disciplinary research among public school students and teachers in 2,931 schools equipped with Internet-access computer rooms. Within this virtual community, students produce collective multimedia research documents that are immediately published in the portal. The project also aims to increase students' autonomy for research, collaborative work and Web authorship. Main sections of the portal are presented and described. Results. Partial results of the first two years' implementation are presented and indicate a strong motivation among students to produce knowledge despite the fragile hardware and software infrastructure at the time. Discussion. In this new environment, students should be seen as 'knowledge architects' and teachers as facilitators, or 'curiosity managers'. The ToLigado portal may constitute a repository for future studies regarding student attitudes in virtual learning environments, students' behaviour as 'authors', Web authorship involving collective knowledge production, teachers' behaviour as facilitators, and virtual learning environments as digital repositories of students' knowledge construction and social capital in virtual learning communities.
Resumo:
In a local production system (LPS), besides external economies, the interaction, cooperation, and learning are indicated by the literature as complementary ways of enhancing the LPS's competitiveness and gains. In Brazil, the greater part of LPSs, mostly composed by small enterprises, displays incipient relationships and low levels of interaction and cooperation among their actors. The size of the participating enterprises itself for specificities that engender organizational constraints, which, in turn, can have a considerable impact on their relationships and learning dynamics. For that reason, it is the purpose of this article to present an analysis of interaction, cooperation, and learning relationships among several types of actors pertaining to an LPS in the farming equipment and machinery sector, bearing in mind the specificities of small enterprises. To this end, the fieldwork carried out in this study aimed at: (i) investigating external and internal knowledge sources conducive to learning and (ii) identifying and analyzing motivating and inhibiting factors related to specificities of small enterprises in order to bring the LPS members closer together and increase their cooperation and interaction. Empirical evidence shows that internal aspects of the enterprises, related to management and infrastructure, can have a strong bearing on their joint actions, interaction and learning processes.