820 resultados para Learning community
Resumo:
En este trabajo se analizan los conflictos e identidades de los movimientos de la educación no formal, popular y formal en Mendoza entre 1969 y 1976, así como los discursos de la educación popular, formal y no formal y las temáticas que fueron objeto de debate dentro de los circuitos pedagógicos en Mendoza entre 1973 y 1974. Se trabajan los conceptos de cátedra, seminario, campamentos universitarios y comunidad didáctica como formatos pedagógicos. Se analiza también la educación popular y la educación de adultos desarrollada en Mendoza y la alfabetización en el proyecto de La Campaña alfabetizadora de 1973 y su relación con el Estado provincial en el clima de militancia política y social de los años ‘70. Se analiza la reforma educativa de los seminarios pedagógicos producida durante el gobierno de Martínez Baca y la experiencia de politización de los/las docentes, especialmente en el marco del Mendozazo, el cual tuvo a las maestras como sujeto protagonista y de quienes es importante poner en consideración su proceso de sindicalización.
Resumo:
La familia de algoritmos de Boosting son un tipo de técnicas de clasificación y regresión que han demostrado ser muy eficaces en problemas de Visión Computacional. Tal es el caso de los problemas de detección, de seguimiento o bien de reconocimiento de caras, personas, objetos deformables y acciones. El primer y más popular algoritmo de Boosting, AdaBoost, fue concebido para problemas binarios. Desde entonces, muchas han sido las propuestas que han aparecido con objeto de trasladarlo a otros dominios más generales: multiclase, multilabel, con costes, etc. Nuestro interés se centra en extender AdaBoost al terreno de la clasificación multiclase, considerándolo como un primer paso para posteriores ampliaciones. En la presente tesis proponemos dos algoritmos de Boosting para problemas multiclase basados en nuevas derivaciones del concepto margen. El primero de ellos, PIBoost, está concebido para abordar el problema descomponiéndolo en subproblemas binarios. Por un lado, usamos una codificación vectorial para representar etiquetas y, por otro, utilizamos la función de pérdida exponencial multiclase para evaluar las respuestas. Esta codificación produce un conjunto de valores margen que conllevan un rango de penalizaciones en caso de fallo y recompensas en caso de acierto. La optimización iterativa del modelo genera un proceso de Boosting asimétrico cuyos costes dependen del número de etiquetas separadas por cada clasificador débil. De este modo nuestro algoritmo de Boosting tiene en cuenta el desbalanceo debido a las clases a la hora de construir el clasificador. El resultado es un método bien fundamentado que extiende de manera canónica al AdaBoost original. El segundo algoritmo propuesto, BAdaCost, está concebido para problemas multiclase dotados de una matriz de costes. Motivados por los escasos trabajos dedicados a generalizar AdaBoost al terreno multiclase con costes, hemos propuesto un nuevo concepto de margen que, a su vez, permite derivar una función de pérdida adecuada para evaluar costes. Consideramos nuestro algoritmo como la extensión más canónica de AdaBoost para este tipo de problemas, ya que generaliza a los algoritmos SAMME, Cost-Sensitive AdaBoost y PIBoost. Por otro lado, sugerimos un simple procedimiento para calcular matrices de coste adecuadas para mejorar el rendimiento de Boosting a la hora de abordar problemas estándar y problemas con datos desbalanceados. Una serie de experimentos nos sirven para demostrar la efectividad de ambos métodos frente a otros conocidos algoritmos de Boosting multiclase en sus respectivas áreas. En dichos experimentos se usan bases de datos de referencia en el área de Machine Learning, en primer lugar para minimizar errores y en segundo lugar para minimizar costes. Además, hemos podido aplicar BAdaCost con éxito a un proceso de segmentación, un caso particular de problema con datos desbalanceados. Concluimos justificando el horizonte de futuro que encierra el marco de trabajo que presentamos, tanto por su aplicabilidad como por su flexibilidad teórica. Abstract The family of Boosting algorithms represents a type of classification and regression approach that has shown to be very effective in Computer Vision problems. Such is the case of detection, tracking and recognition of faces, people, deformable objects and actions. The first and most popular algorithm, AdaBoost, was introduced in the context of binary classification. Since then, many works have been proposed to extend it to the more general multi-class, multi-label, costsensitive, etc... domains. Our interest is centered in extending AdaBoost to two problems in the multi-class field, considering it a first step for upcoming generalizations. In this dissertation we propose two Boosting algorithms for multi-class classification based on new generalizations of the concept of margin. The first of them, PIBoost, is conceived to tackle the multi-class problem by solving many binary sub-problems. We use a vectorial codification to represent class labels and a multi-class exponential loss function to evaluate classifier responses. This representation produces a set of margin values that provide a range of penalties for failures and rewards for successes. The stagewise optimization of this model introduces an asymmetric Boosting procedure whose costs depend on the number of classes separated by each weak-learner. In this way the Boosting procedure takes into account class imbalances when building the ensemble. The resulting algorithm is a well grounded method that canonically extends the original AdaBoost. The second algorithm proposed, BAdaCost, is conceived for multi-class problems endowed with a cost matrix. Motivated by the few cost-sensitive extensions of AdaBoost to the multi-class field, we propose a new margin that, in turn, yields a new loss function appropriate for evaluating costs. Since BAdaCost generalizes SAMME, Cost-Sensitive AdaBoost and PIBoost algorithms, we consider our algorithm as a canonical extension of AdaBoost to this kind of problems. We additionally suggest a simple procedure to compute cost matrices that improve the performance of Boosting in standard and unbalanced problems. A set of experiments is carried out to demonstrate the effectiveness of both methods against other relevant Boosting algorithms in their respective areas. In the experiments we resort to benchmark data sets used in the Machine Learning community, firstly for minimizing classification errors and secondly for minimizing costs. In addition, we successfully applied BAdaCost to a segmentation task, a particular problem in presence of imbalanced data. We conclude the thesis justifying the horizon of future improvements encompassed in our framework, due to its applicability and theoretical flexibility.
Resumo:
Students in urban schools who are negatively impacted need stability and continuity the most. However, at least half of new teachers leave their profession within five years. In order for this situation to change, support is needed for new teachers and encouragement is needed for experienced teachers. The purpose of the study is to offer a first-hand description of factors that affect the profession of teaching and especially teachers who may be wondering how to stay in teaching for more than five years. Veteran teachers gain the opportunity to reflect, validate, and (probably) celebrate their own journey through this profession. This autoethnography uses my experience of a 29-year veteran teacher, who started with an alternative teaching license, to mirror what researchers have identified as key factors for sustainability and how they affected my continued commitment to teaching in urban schools. The following questions framed the study: 1. Why did I choose teaching as a career? 2. What supportive factors contributed to my decision to continue teaching in an urban school rather than leave the profession? 3. What internal and external struggles have I encountered in teaching and what strategies did I use to overcome them? 4. What beliefs and experiences led to my steadfast commitment to teaching in an urban setting? 5. How do I define success as an urban teacher? 6. What are the implications of my story for urban education? This autoethnography involves data collection and in-depth analysis of documents and artifacts that were generated during my teaching career as an urban educator. These documents and artifacts come from both internal and external sources. The study’s implications reach beyond teachers and include two sub-groups: teacher education programs and school administrators. The implication for teachers is the importance of a two-fold support system in order to thrive: first teachers need spiritual support and second they need to surround themselves with likeminded teachers. The implications for teacher education programs include making pre-service teachers aware of the realities of urban settings and provide them with resources, which could help overcome the attrition rate. Additionally, pre-service teachers need to know how to form credible relationships with their students. This study also reveals the important role that school principals play in the success of their teachers. First, principals are responsible for creating a positive school climate that promotes a professional learning community. Second, they need to establish relational trust in their building. Third, they need to nourish their staff both physically and emotionally. Finally, the implications of autoethnography for teachers and researchers are also discussed.
Resumo:
El siguiente artículo hace una reflexión crítica sobre los MOOC, prestando especial atención al análisis de los nuevos sistemas de evaluación; en concreto, el método peer to peer, y cómo esto afecta al rol de docentes y estudiantes. El estudio se ha llevado a cabo tomando como referencia dos sMOOC liderados por el Proyecto Europeo ECO (Elearning, Communication and Open-data: Massive Mobile, Ubiquitous and Open Learning). Los resultados que se presentan han sido analizados desde una perspectiva cuantitativa, utilizando como muestra a los miembros de la comunidad de aprendizaje que han participado en ambos cursos. A través de la utilización de un cuestionario se ha podido conocer cómo han valorado su experiencia formativa y su grado de satisfacción. La mitad de los sujetos encuestados ha considerado adecuado y justo el nuevo sistema evaluativo, sin embargo existe otra mitad que lo considera injusto y que tiene lagunas. Se ha abordado la evaluación como una parte intrínseca del proceso educativo y por ello se ha enfatizado en aspectos como el empoderamiento del alumnado, la cultura de la participación y la interacción social, conceptos que nos acercan a nuevos modelos de aprendizaje que potencian el intelecto colectivo y dejan atrás sistemas transmisivos de conocimiento.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-05
Resumo:
In 2002, the authors reviewed the educational performance of a state education department virtual schooling service during its first 2 years of operation, 2000-2001 (Pendergast, Kapitzke, Land, Luke, & Bahr, 2002). Established by Education Queensland, the Virtual Schooling Service (VSS) utilises synchronous and asynchronous online delivery strategies and a range of learning technologies to support students at a distance (see http://education.qld.gov.au/learningplace/vss/). The service commenced with a focus on senior secondary subjects. At present, there are over 700 students in 89 schools across the state enrolled in 9 subjects. In response to the recommendations of the study, a series of professional development activities were conducted with the VSS teachers by the authors. Opportunity for critical reflection was provided, including consideration of the ways in which the teachers were developing as a learning community. Some data, including visual representations, were collected from participants with the purpose of understanding how VSS teachers are constructed as professionals. This study compares and contrasts that data with self-constructions of teacher professionals in other fields.
Resumo:
Among the most surprising findings in Physics Education Research is the lack of positive results on attitudinal measures, such as Colorado Learning Attitudes about Science Survey (CLASS) and Maryland Physics Expectations Survey (MPEX). The uniformity with which physics teaching manages to negatively shift attitudes toward physics learning is striking. Strategies which have been shown to improve conceptual learning, such as interactive engagement and studio-format classes, provide more authentic science experiences for students; yet do not seem to be sufficient to produce positive attitudinal results. Florida International University’s Physics Education Research Group has implemented Modeling Instruction in University Physics classes as part of an overall effort toward building a research and learning community. Modeling Instruction is explicitly designed to engage students in scientific practices that include model building, validation, and revision. Results from a preinstruction/postinstruction CLASS measurement show attitudinal improvements through both semesters of an introductory physics sequence, as well as over the entire two-course sequence. In this Brief Report, we report positive shifts from the CLASS in one section of a modeling-based introductory physics sequence, for both mechanics (N=22) and electricity and magnetism (N=23). Using the CLASS results and follow up interviews, we examine how these results reflect on modeling instruction and the unique student community and population at FIU.
Resumo:
The search for new meanings in the basic education teaching-learning process has caused the development of public policies for mother language teaching, such as the Portuguese Language Olympics (OLP). To contribute to this search, this intervention project has as object of study reading and writing practices developed in the OLP through the educational model arising from literacy projects (TINOCO, 2008). In working towards, the general aim of reframing reading and writing practices through the PLO, developed from the teaching model that comes of literacy projects, we established three specific objectives: a) reflect on a national writing contest; b) to realign conceptual and methodological the Portuguese classes of the 7th grade school due to the developed project; c) to improve the reading and writing practices of the students in 7th grade of school where we operate. Therefore, we base ourselves in the history of Portuguese teaching in Brazil (SOARES, 2002; GERALDI, 2008), the dialogical conception of language (BAKHTIN, VOLOCHÍNOV [1929] 2009; SOARES, 1998; FARACO, 2009) in Literacy Studies (KLEIMAN, 2001, 2005, 2006; TINOCO, 2008; OLIVEIRA; TINOCO; SANTOS, 2011; STREET, 2014), the learning community concept (AFONSO, 2001), in studies of retextualization (OLIVEIRA, 2005; MARCUSCHI, 2010), gender discursive literary memories (CLARA; ALTENFELDER; ALMEIDA, 20--), in written evidence (POSSENTI, 2002) and Textual Linguistics (MARCUSCHI, 2008; ANTUNES, 2009; KOCH, 2011; SILVA [et. al.], 2013). Methodologically, this qualitative research (LÜDKE; ANDRÉ, 1986; ANDRÉ, 2005) is anchored in Applied Linguistics (MOITA LOPES, 1996). This research was supporting by students in the 7th grade, teachers, management team and parents, as well as people outside of school community. The instruments used for the generation of data were semi-structured interview, students‟ texts, audio recordings and video, photos, OLP material (teacher's book, a collection of texts and CD-ROM). The data generated allowed us to establish the following categories of analysis in relation to the texts produced: authorship, in formativeness, discursive progression, compositional structure, content, style, and language aspects. In addition, throughout the project, the collaborators have produced texts of various genres: oral interview and written request letter, legal, literary memories, oral and experience report. Also experienced a local award and participated in a national competition. They produced a video and a book with stories and student authorship of illustrations. The results achieved show that the literacy project developed also allowed macro changes: reading and writing practices, once considered strictly school studied, they were transformed into broader social practices, through which various literacy agents were able to collaboratively act. In short, they experienced writing practices that go beyond the classroom and the teacher-student relationship.
Resumo:
Full paper presented at EC-TEL 2016
Resumo:
Available under the GNU Lesser General Public License (LGPL3)
Resumo:
Many immigrants in Sweden have not had the chance to learn to read and write, for various reasons. In Sweden, literacy is a prerequisite to being able to function in the cultural community, and for many immigrants this is the first time that they experience their inability to read and write as a handicap or see themselves as “illiterate”. The aim of this study is to use a socio-cultural, second language and gender approach to describe, analyse and understand how a number of adult, illiterate, immigrant women experience their situation when they are expected to simultaneously learn to speak, read and write Swedish. The study focuses on two literacy groups in two Swedish municipalities. In one of the groups I act as both teacher and researcher. The thesis is a case study of the learning process of five illiterate immigrant women in Sweden. The results are based on interviews, carried out with the help of an interpreter, and observation of teaching and texts ritten by the students. The study is based on the assumption that human learning is an activity that takes place in a cultural community in a social context. When learning a language, the language is simultaneously the tool that facilitates social communication and the object of the learning process. The study shows that cultural communities influence the women in different ways. Gender structures are firmly planted in a patriarchal value system, which means that women are seen as inferior to men, and women are expected to “meet the demands of others”. The women have no time to study at home, as their household duties are prioritised. However, there are subtle indications that there is a wish to change the situation in accordance with Swedish values and norms. This can be seen in the Swedish for Immigrants (SFI) lessons. As they have little contact with Swedes, school is the only arena in which they have a chance to use Swedish. They are positive towards teaching and school as an institution. Here they are able to develop an alternative identity. The study also shows that teaching in the literacy groups is to a great extent based on a technical approach, in which the teacher tries to elicit a correct answer from the students. Social interaction involving contemplation and negotiation is either not included or not prioritised. the women’s experience and knowledge is not made use of. There are,however, occasions when collaborative discussions take place between the teacher and students. On these occasions an exchange of experiences takes place. Learning is based on the students’ own experiences and thoughts. Linguistic concepts gain meaning in the collaborative discussion. Initially the concepts may be unclear, but the group works on them together, adapting and adjusting them until they finally make sense. Finally, I conclude that women immigrants bring their own socio-cultural values and experience to the school situation, which affects their learning process to varying degrees. Furthermore, immigrant women need more time at school, as it is the only arena in which they can spend time on studying and personal development. another conclusion is that the school must become a learning community that recognises the immigrants’ cultures, makes use of the students’ experience and allows the students to participate in collaborative discussions, so that they can develop their ability to speak, read and write Swedish.
Resumo:
L’un des problèmes importants en apprentissage automatique est de déterminer la complexité du modèle à apprendre. Une trop grande complexité mène au surapprentissage, ce qui correspond à trouver des structures qui n’existent pas réellement dans les données, tandis qu’une trop faible complexité mène au sous-apprentissage, c’est-à-dire que l’expressivité du modèle est insuffisante pour capturer l’ensemble des structures présentes dans les données. Pour certains modèles probabilistes, la complexité du modèle se traduit par l’introduction d’une ou plusieurs variables cachées dont le rôle est d’expliquer le processus génératif des données. Il existe diverses approches permettant d’identifier le nombre approprié de variables cachées d’un modèle. Cette thèse s’intéresse aux méthodes Bayésiennes nonparamétriques permettant de déterminer le nombre de variables cachées à utiliser ainsi que leur dimensionnalité. La popularisation des statistiques Bayésiennes nonparamétriques au sein de la communauté de l’apprentissage automatique est assez récente. Leur principal attrait vient du fait qu’elles offrent des modèles hautement flexibles et dont la complexité s’ajuste proportionnellement à la quantité de données disponibles. Au cours des dernières années, la recherche sur les méthodes d’apprentissage Bayésiennes nonparamétriques a porté sur trois aspects principaux : la construction de nouveaux modèles, le développement d’algorithmes d’inférence et les applications. Cette thèse présente nos contributions à ces trois sujets de recherches dans le contexte d’apprentissage de modèles à variables cachées. Dans un premier temps, nous introduisons le Pitman-Yor process mixture of Gaussians, un modèle permettant l’apprentissage de mélanges infinis de Gaussiennes. Nous présentons aussi un algorithme d’inférence permettant de découvrir les composantes cachées du modèle que nous évaluons sur deux applications concrètes de robotique. Nos résultats démontrent que l’approche proposée surpasse en performance et en flexibilité les approches classiques d’apprentissage. Dans un deuxième temps, nous proposons l’extended cascading Indian buffet process, un modèle servant de distribution de probabilité a priori sur l’espace des graphes dirigés acycliques. Dans le contexte de réseaux Bayésien, ce prior permet d’identifier à la fois la présence de variables cachées et la structure du réseau parmi celles-ci. Un algorithme d’inférence Monte Carlo par chaîne de Markov est utilisé pour l’évaluation sur des problèmes d’identification de structures et d’estimation de densités. Dans un dernier temps, nous proposons le Indian chefs process, un modèle plus général que l’extended cascading Indian buffet process servant à l’apprentissage de graphes et d’ordres. L’avantage du nouveau modèle est qu’il admet les connections entres les variables observables et qu’il prend en compte l’ordre des variables. Nous présentons un algorithme d’inférence Monte Carlo par chaîne de Markov avec saut réversible permettant l’apprentissage conjoint de graphes et d’ordres. L’évaluation est faite sur des problèmes d’estimations de densité et de test d’indépendance. Ce modèle est le premier modèle Bayésien nonparamétrique permettant d’apprendre des réseaux Bayésiens disposant d’une structure complètement arbitraire.
Resumo:
The debriefing phase in human patient simulation is considered to be crucial for learning. To ensure good learning conditions, the use of small groups is recommended, which poses a major challenge when the student count is high. The use of large groups may provide an alternative for typical lecture-style education and contribute to a more frequently and repeated training which is considered to be important for achieving simulation competency. The purpose of the present study was to describe nursing students’ experiences obtained during the debriefing conducted in small and large groups with the use of a qualitative descriptive approach. The informants had participated in a human patient simulation situation either in large or small groups. Data was collected through the use of five focus-group interviews and analysed by content analysis. The findings showed that independent of group-size the informants experienced the learning strategies to be unfamiliar and intrusive, and in the large groups to such an extent that learning was hampered. Debriefing was perceived as offering excellent opportunities for transferable learning, and activity, predictability and preparedness were deemed essential. Small groups provided the best learning conditions in that safety and security were ensured, but were perceived as providing limited challenges to accommodate professional requirements as a nurse. Simulation competency as a prerequisite for learning was shown not to be developed isolated in conjunction with simulation, but depends on a systematic effort to build a learning community in the programme in general. The faculty needs to support the students to be conscious and accustomed to learning as a heightened experience of learning out of their comfort zone.
Resumo:
Relatório de estágio apresentado à Escola Superior de Educação de Santarém para cumprimento dos requisitos necessários à obtenção do grau de mestre em Educação e Comunicação Multimédia
Resumo:
Relatório de estágio apresentado à Escola Superior de Educação de Santarém para cumprimento dos requisitos necessários à obtenção do grau de mestre em Educação e Comunicação Multimédia