954 resultados para LIE-ALGEBRA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Let alpha be a C(infinity) curve in a homogeneous space G/H. For each point x on the curve, we consider the subspace S(k)(alpha) of the Lie algebra G of G consisting of the vectors generating a one parameter subgroup whose orbit through x has contact of order k with alpha. In this paper, we give various important properties of the sequence of subspaces G superset of S(1)(alpha) superset of S(2)(alpha) superset of S(3)(alpha) superset of ... In particular, we give a stabilization property for certain well-behaved curves. We also describe its relationship to the isotropy subgroup with respect to the contact element of order k associated with alpha.
Resumo:
A systematic construction of super W algebras in terms of the WZNW model based on a super Lie algebra is presented. These are shown to be the symmetry structure of the super Toda models, which can be obtained from the WZNW theory by Hamiltonian reduction. A classification, according to the conformal spin defined by an improved energy momentum tensor, is discussed in general terms for all super Lie algebras whose simple roots are fermionic. A detailed discussion employing the Dirac bracket structure and an explicit construction of W algebras for the cases of OSP(1, 2), OSP(2, 2), OSP(3, 2) and D(2, 1\ alpha) are given. The N = 1 and N = 2 superconformal algebras are discussed in the pertinent cases.
Resumo:
A scheme inspired in Lie algebra extensions is introduced that enlarges gauge models to allow some coupling between space-time and gauge space. Everything may be written in terms of a generalized covariant derivative including usual differential plus purely algebraic terms. A noncovariant vacuum appears, introducing a natural symmetry breaking, but currents satisfy conservation laws alike those found in gauge theories. © 1991 American Institute of Physics.
Resumo:
We apply a five-dimensional formulation of Galilean covariance to construct non-relativistic Bhabha first-order wave equations which, depending on the representation, correspond either to the well known Dirac equation (for particles with spin 1/2) or the Duffin-Kemmer-Petiau equation (for spinless and spin 1 particles). Here the irreducible representations belong to the Lie algebra of the 'de Sitter group' in 4 + 1 dimensions, SO(5, 1). Using this approach, the non-relativistic limits of the corresponding equations are obtained directly, without taking any low-velocity approximation. As a simple illustration, we discuss the harmonic oscillator.
Resumo:
Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of s^l(n) (n = 2, 3) is presented explicitly. © SISSA/ISAS 2003.
Resumo:
We study the Schwinger Model on the null-plane using the Dirac method for constrained systems. The fermion field is analyzed using the natural null-plane projections coming from the γ-algebra and it is shown that the fermionic sector of the Schwinger Model has only second class constraints. However, the first class constraints are exclusively of the bosonic sector. Finally, we establish the graded Lie algebra between the dynamical variables, via generalized Dirac bracket in the null-plane gauge, which is consistent with every constraint of the theory. © World Scientific Publishing Company.
Resumo:
We study the local properties of a class of codimension-2 defects of the 6d N = (2, 0) theories of type J = A, D, E labeled by nilpotent orbits of a Lie algebra $g, where g is determined by J and the outer-automorphism twist around the defect. This class is a natural generalization of the defects of the six-dimensional (6d) theory of type SU(N) labeled by a Young diagram with N boxes. For any of these defects, we determine its contribution to the dimension of the Higgs branch, to the Coulomb branch operators and their scaling dimensions, to the four-dimensional (4d) central charges a and c and to the flavor central charge k. © 2013 World Scientific Publishing Company.
Resumo:
Using an approach based on the Casimir operators of the de Sitter group, conformally invariant equations for a fundamental spin-2 field are obtained, and their consistency is discussed. It is shown that only when the spin-2 field is interpreted as a 1-form assuming values in the Lie algebra of the translation group, rather than a symmetric second-rank tensor, the field equation is both conformally and gauge invariant. © 2013 Pleiades Publishing, Ltd.
Resumo:
We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis.
Resumo:
A full characterization is given of ordinary and restricted enveloping algebras which are normal with respect to the principal involution.
Resumo:
We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.
Resumo:
Neuroimaging studies suggest anterior-limbic structural brain abnormalities in patients with bipolar disorder (BD), but few studies have shown these abnormalities in unaffected but genetically liable family members. In this study, we report morphometric correlates of genetic risk for BD using voxel-based morphometry. In 35 BD type I (BD-I) patients, 20 unaffected first-degree relatives (UAR) of BD patients and 40 healthy control subjects underwent 3 T magnetic resonance scanner imaging. Preprocessing of images used DARTEL (diffeomorphic anatomical registration through exponentiated lie algebra) for voxel-based morphometry in SPM8 (Wellcome Department of Imaging Neuroscience, London, UK). The whole-brain analysis revealed that the gray matter (GM) volumes of the left anterior insula and right inferior frontal gyrus showed a significant main effect of diagnosis. Multiple comparison analysis showed that the BD-I patients and the UAR subjects had smaller left anterior insular GM volumes compared with the healthy subjects, the BD-I patients had smaller right inferior frontal gyrus compared with the healthy subjects. For white matter (WM) volumes, there was a significant main effect of diagnosis for medial frontal gyrus. The UAR subjects had smaller right medial frontal WM volumes compared with the healthy subjects. These findings suggest that morphometric brain abnormalities of the anterior-limbic neural substrate are associated with family history of BD, which may give insight into the pathophysiology of BD, and be a potential candidate as a morphological endophenotype of BD. Molecular Psychiatry (2012) 17, 412-420; doi: 10.1038/mp.2011.3; published online 15 February 2011
Resumo:
In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.
Resumo:
It is known that the Camassa–Holm (CH) equation describes pseudo-spherical surfaces and that therefore its integrability properties can be studied by geometrical means. In particular, the CH equation admits nonlocal symmetries of “pseudo-potential type”: the standard quadratic pseudo-potential associated with the geodesics of the pseudo-spherical surfaces determined by (generic) solutions to CH, allows us to construct a covering π of the equation manifold of CH on which nonlocal symmetries can be explicitly calculated. In this article, we present the Lie algebra of (first-order) nonlocal π-symmetries for the CH equation, and we show that this algebra contains a semidirect sum of the loop algebra over sl(2,R) and the centerless Virasoro algebra. As applications, we compute explicit solutions, we construct a Darboux transformation for the CH equation, and we recover its recursion operator. We also extend our results to the associated Camassa–Holm equation introduced by J. Schiff.