932 resultados para Judgment (Logic)
Resumo:
Bertrand Russell (1872 1970) introduced the English-speaking philosophical world to modern, mathematical logic and foundational study of mathematics. The present study concerns the conception of logic that underlies his early logicist philosophy of mathematics, formulated in The Principles of Mathematics (1903). In 1967, Jean van Heijenoort published a paper, Logic as Language and Logic as Calculus, in which he argued that the early development of modern logic (roughly the period 1879 1930) can be understood, when considered in the light of a distinction between two essentially different perspectives on logic. According to the view of logic as language, logic constitutes the general framework for all rational discourse, or meaningful use of language, whereas the conception of logic as calculus regards logic more as a symbolism which is subject to reinterpretation. The calculus-view paves the way for systematic metatheory, where logic itself becomes a subject of mathematical study (model-theory). Several scholars have interpreted Russell s views on logic with the help of the interpretative tool introduced by van Heijenoort,. They have commonly argued that Russell s is a clear-cut case of the view of logic as language. In the present study a detailed reconstruction of the view and its implications is provided, and it is argued that the interpretation is seriously misleading as to what he really thought about logic. I argue that Russell s conception is best understood by setting it in its proper philosophical context. This is constituted by Immanuel Kant s theory of mathematics. Kant had argued that purely conceptual thought basically, the logical forms recognised in Aristotelian logic cannot capture the content of mathematical judgments and reasonings. Mathematical cognition is not grounded in logic but in space and time as the pure forms of intuition. As against this view, Russell argued that once logic is developed into a proper tool which can be applied to mathematical theories, Kant s views turn out to be completely wrong. In the present work the view is defended that Russell s logicist philosophy of mathematics, or the view that mathematics is really only logic, is based on what I term the Bolzanian account of logic . According to this conception, (i) the distinction between form and content is not explanatory in logic; (ii) the propositions of logic have genuine content; (iii) this content is conferred upon them by special entities, logical constants . The Bolzanian account, it is argued, is both historically important and throws genuine light on Russell s conception of logic.
Resumo:
Constructive (intuitionist, anti-realist) semantics has thus far been lacking an adequate concept of truth in infinity concerning factual (i.e., empirical, non-mathematical) sentences. One consequence of this problem is the difficulty of incorporating inductive reasoning in constructive semantics. It is not possible to formulate a notion for probable truth in infinity if there is no adequate notion of what truth in infinity is. One needs a notion of a constructive possible world based on sensory experience. Moreover, a constructive probability measure must be defined over these constructively possible empirical worlds. This study defines a particular kind of approach to the concept of truth in infinity for Rudolf Carnap's inductive logic. The new approach is based on truth in the consecutive finite domains of individuals. This concept will be given a constructive interpretation. What can be verifiably said about an empirical statement with respect to this concept of truth, will be explained, for which purpose a constructive notion of epistemic probability will be introduced. The aim of this study is also to improve Carnap's inductive logic. The study addresses the problem of justifying the use of an "inductivist" method in Carnap's lambda-continuum. A correction rule for adjusting the inductive method itself in the course of obtaining evidence will be introduced. Together with the constructive interpretation of probability, the correction rule yields positive prior probabilities for universal generalizations in infinite domains.
Resumo:
A fuzzy logic based centralized control algorithm for irrigation canals is presented. Purpose of the algorithm is to control downstream discharge and water level of pools in the canal, by adjusting discharge release from the upstream end and gates settings. The algorithm is based on the dynamic wave model (Saint-Venant equations) inversion in space, wherein the momentum equation is replaced by a fuzzy rule based model, while retaining the continuity equation in its complete form. The fuzzy rule based model is developed on fuzzification of a new mathematical model for wave velocity, the derivational details of which are given. The advantages of the fuzzy control algorithm, over other conventional control algorithms, are described. It is transparent and intuitive, and no linearizations of the governing equations are involved. Timing of the algorithm and method of computation are explained. It is shown that the tuning is easy and the computations are straightforward. The algorithm provides stable, realistic and robust outputs. The disadvantage of the algorithm is reduced precision in its outputs due to the approximation inherent in the fuzzy logic. Feed back control logic is adopted to eliminate error caused by the system disturbances as well as error caused by the reduced precision in the outputs. The algorithm is tested by applying it to water level control problem in a fictitious canal with a single pool and also in a real canal with a series of pools. It is found that results obtained from the algorithm are comparable to those obtained from conventional control algorithms.
Resumo:
An on-line algorithm is developed for the location of single cross point faults in a PLA (FPLA). The main feature of the valgorithm is the determination of a fault set corresponding to the response obtained for a failed test. For the apparently small number of faults in this set, all other tests are generated and a fault table is formed. Subsequently, an adaptive procedure is used to diagnose the fault. Functional equivalence test is carried out to determine the actual fault class if the adaptive testing results in a set of faults with identical tests. The large amount of computation time and storage required in the determination, a priori, of all the fault equivalence classes or in the construction of a fault dictionary are not needed here. A brief study of functional equivalence among the cross point faults is also made.
Resumo:
A fuzzy logic system (FLS) with a new sliding window defuzzifier is proposed for structural damage detection using modal curvatures. Changes in the modal curvatures due to damage are fuzzified using Gaussian fuzzy sets and mapped to damage location and size using the FLS. The first four modal vectors obtained from finite element simulations of a cantilever beam are used for identifying the location and size of damage. Parametric studies show that modal curvatures can be used to accurately locate the damage; however, quantifying the size of damage is difficult. Tests with noisy simulated data show that the method detects damage very accurately at different noise levels and when some modal data are missing.
Resumo:
This paper describes a switching theoretic algorithm for the folding of programmable logic arrays (PLA). The algorithm is valid for both column and row folding, although it has been presented considering only the simple column folding. The pairwise compatibility relations among all the pairs of the columns of the PLA are mapped into a square matrix, called the compatibility matrix of the PLA. A foldable compatibility matrix (FCM), a new concept introduced by the author, is then derived from the compatibility matrix. A new theorem called the folding theorem is then proved. The theorem states that the existence of an m by 2m FCM is both necessary and sufficient to fold 2m columns of the n column PLA (2m ≤ n). Once an FCM is obtained, the ordered pairs of foldable columns and the re-ordering of the rows are readily determined.
Resumo:
Ph.D. Thesis
Resumo:
Uncertainties associated with the structural model and measured vibration data may lead to unreliable damage detection. In this paper, we show that geometric and measurement uncertainty cause considerable problem in damage assessment which can be alleviated by using a fuzzy logic-based approach for damage detection. Curvature damage factor (CDF) of a tapered cantilever beam are used as damage indicators. Monte Carlo simulation (MCS) is used to study the changes in the damage indicator due to uncertainty in the geometric properties of the beam. Variation in these CDF measures due to randomness in structural parameter, further contaminated with measurement noise, are used for developing and testing a fuzzy logic system (FLS). Results show that the method correctly identifies both single and multiple damages in the structure. For example, the FLS detects damage with an average accuracy of about 95 percent in a beam having geometric uncertainty of 1 percent COV and measurement noise of 10 percent in single damage scenario. For multiple damage case, the FLS identifies damages in the beam with an average accuracy of about 94 percent in the presence of above mentioned uncertainties. The paper brings together the disparate areas of probabilistic analysis and fuzzy logic to address uncertainty in structural damage detection.
Resumo:
This thesis is a study of a rather new logic called dependence logic and its closure under classical negation, team logic. In this thesis, dependence logic is investigated from several aspects. Some rules are presented for quantifier swapping in dependence logic and team logic. Such rules are among the basic tools one must be familiar with in order to gain the required intuition for using the logic for practical purposes. The thesis compares Ehrenfeucht-Fraïssé (EF) games of first order logic and dependence logic and defines a third EF game that characterises a mixed case where first order formulas are measured in the formula rank of dependence logic. The thesis contains detailed proofs of several translations between dependence logic, team logic, second order logic and its existential fragment. Translations are useful for showing relationships between the expressive powers of logics. Also, by inspecting the form of the translated formulas, one can see how an aspect of one logic can be expressed in the other logic. The thesis makes preliminary investigations into proof theory of dependence logic. Attempts focus on finding a complete proof system for a modest yet nontrivial fragment of dependence logic. A key problem is identified and addressed in adapting a known proof system of classical propositional logic to become a proof system for the fragment, namely that the rule of contraction is needed but is unsound in its unrestricted form. A proof system is suggested for the fragment and its completeness conjectured. Finally, the thesis investigates the very foundation of dependence logic. An alternative semantics called 1-semantics is suggested for the syntax of dependence logic. There are several key differences between 1-semantics and other semantics of dependence logic. 1-semantics is derived from first order semantics by a natural type shift. Therefore 1-semantics reflects an established semantics in a coherent manner. Negation in 1-semantics is a semantic operation and satisfies the law of excluded middle. A translation is provided from unrestricted formulas of existential second order logic into 1-semantics. Also game theoretic semantics are considerd in the light of 1-semantics.
Resumo:
A novel CMOS static RAM cell for ternary logic systems is described. This cell is based on the lambda diode. The operation of the cell has been simulated using the SPICE 2G program. The results of the simulation are given.
Resumo:
It is shown that at most, n + 3 tests are required to detect any single stuck-at fault in an AND gate or a single faulty EXCLUSIVE OR (EOR) gate in a Reed-Muller canonical form realization of a switching function.
Resumo:
Canonical forms for m-valued functions referred to as m-Reed-Muller canonical (m-RMC) forms that are a generalization of RMC forms of two-valued functions are proposed. m-RMC forms are based on the operations ?m (addition mod m) and .m (multiplication mod m) and do not, as in the cases of the generalizations proposed in the literature, require an m-valued function for m not a power of a prime, to be expressed by a canonical form for M-valued functions, where M > m is a power of a prime. Methods of obtaining the m-RMC forms from the truth vector or the sum of products representation of an m-valued function are discussed. Using a generalization of the Boolean difference to m-valued logic, series expansions for m-valued functions are derived.
Resumo:
Big Data and Learning Analytics’ promise to revolutionise educational institutions, endeavours, and actions through more and better data is now compelling. Multiple, and continually updating, data sets produce a new sense of ‘personalised learning’. A crucial attribute of the datafication, and subsequent profiling, of learner behaviour and engagement is the continual modification of the learning environment to induce greater levels of investment on the parts of each learner. The assumption is that more and better data, gathered faster and fed into ever-updating algorithms, provide more complete tools to understand, and therefore improve, learning experiences through adaptive personalisation. The argument in this paper is that Learning Personalisation names a new logistics of investment as the common ‘sense’ of the school, in which disciplinary education is ‘both disappearing and giving way to frightful continual training, to continual monitoring'.