189 resultados para Jatropha podagrica
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The physic nut (Jatropha curcas L.) (Euphorbiaceae) has emerged as a new option in cultivation aimed at biodiesel production. In order to provide information that may be useful to further develop management plans for that specific crop, samples of mites were collected from cultured and wild J. curcas plants in various regions of the country and from two other species of the same genus, Jatropha gossypiifolia L. and Jatropha mollissima (Pohl) Baill. in the northeastern region of Brazil. Altogether 31 species belonging to 10 families were recorded. The family Phytoseiidae presented the largest number of species (17). Polyphagotarsonemus latus Banks (Tarsonemidae) was the most abundant species (8,503 specimens). A dichotomous key was prepared to identify all the sampled species. At least four mite species of the samples deserve attention as showing potential for being pests in the crops of J. curcas, Brevipalpus phoenicis, Brevipalpus obovatus, Polyphagotarsonemus latus and Tetranychus bastosi, the latter two often found in great abundance.
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The physic nut can be propagated asexually or sexually. Using cuttings have been earlier yield and more fidelity characteristics of the parent plant. However, there is less initial vegetative growth. The seeds from the plants have increased genetic variability, are more vigorous and begin production later. To get quality changes, the substrate is an important factor. With that the objective was to taste pre-germinated treatments and different substrate on seeds emergence and quality physic nut seedlings. The experimental design was completely randomized, in factorial scheme 6 x 3 (pre-germinated treatments x substrate), 18 treatments and 4 repetition, 8 seeds to each repetition. It was evaluated six pre-germination treatments: T1: witness (without treatments); T2: water immersion for 12 hours; T3: water immersion for 24 hours; T4: mechanical scarification; T5: mechanical scarification + water immersion for 12 hours; T6: mechanical scarification + water immersion for 24 hours, using as substrate: commercial, expanded vermiculite and sand washed. The mechanical scarification was realized opposite the micropyle using sandpaper n. 60. After the pre-germination treatments, the seeds were emergence in plastic cups (200mL) with substrates. We evaluated the characteristics: percentage, beginning and emergence speed index, mean length of plant, diameter of plant stem, SPAD index, fresh and dry shoot and root. The results showed that in seeds of Jatropha do not need pre-germinative treatments; and the use of commercial substrate showed seedling development.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of the present work was to estimate the genetic parameters of morphological traits, such as plant growth, fruit and seed production; and oil content and also to provide a source of superior genetic material for the breeding program of Jatropha curcas. For that, a J. curcas open pollination progeny test was set up in Sao Manuel Experimental Station, of College of Agricultural Sciences (FCA) of Sao Paulo State University (UNESP). The experimental design was of completely randomized blocks with 30 progenies, three replications, and eight plants per linear plot. We evaluated plants height (ALT), number of branches per plant (NRP), number of inflorescences per plant (NINE), number of fruits per plant (NF), weight of fruits (PE), weight of seeds (PS) and oil content % (TO). The software SELEGEN was the used to estimate the genetic parameters. The individual genetic variation coefficients (CVg) and progeny genetic variation coefficients (CVgp) at 24 months were 26.7% and 13.4% for height and 21.2% and 10.6% for number of branches. At 48 months the heritability coefficients among the progeny averages (h(mp)(2)) were 0.41 (ALT); 0.31 (NRP); 0.77 (NINF), and 0.44 (NF). The coefficient of heritability for individual plant level of oil content (TO %) was very low (h(a)(2) = 0.03), therefore, for the heritability of progeny means was higher than the individual level (h(mp)(2) = 0.37). Among progenies, some of them were superior for both, and seed production and oil content. We conclude that the present J. curcas population has enough genetic variability allowing obtaining gains through advanced generations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)