992 resultados para Iron-containing Intermetallics
Resumo:
The reported experimental work on the systems Fe-Zn-O and Fe-Zn-Si-O in equilibrium with metallic iron is part of a wider research program that combines experimental and thermodynamic computer modeling techniques to characterize zinc/lead industrial slags and sinters in the system PbO-ZnO-SiO2-CaO-FeO-Fe2O3. Extensive experimental,investigations using high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA) were carried out. Special experimental; procedures were developed to enable accurate measurements in these ZnO-containing systems to be performed in equilibrium with metallic iron; The systems Fe-Zn-O and FeZn-Si-O were experimentally investigated in equilibrium with metallic iron in the temperature ranges 900 degreesC to 1200 degreesC (1173 to 1473 K) and from 1000 degreesC to 1350 degreesC (1273 to 1623 K), respectively. The liquidus surface in the system Fe-Zn-Si-O in equilibrium with metallic iron was characterized in the composition ranges 0 to 33 wt pet ZnO and 0 to 40 wt pet SiO2. The wustite (Fe,Zn)O, zincite (Zn,Fe)O, willemite (Zn,Fe)(2)SiO4, arid fayalite: (Fe,Zn)(2)SiO4 solid solutions in equilibrium with metallic iron were measured.
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The aim of this work is to provide a quantitative method for analysis of the concentration of superparamagnetic iron oxide nanoparticles (SPION), determined by means of ferromagnetic resonance (FMR), with the nanoparticles coupled to a specific antibody (AC133), and thus to express the antigenic labeling evidence for the stem cells C D133(+). The FMR efficiency and sensitivity were proven adequate for detecting and quantifying the low amounts of iron content in the C D133(+) cells (similar to 6.16 x 10(5) pg in the volume of 2 mu l containing 4.5 x 1011 SPION). The quantitative method led to the result of 1.70 x 10(-13) mol of Fe (9.5 pg), or 7.0 x 10(6) nanoparticles per cell. For the quantification analysis via the FMR technique it was necessary to carry out a preliminary quantitative visualization of iron oxide-labeled cells in order to ensure that the nanoparticles coupled to the antibodies are indeed tied to the antigen at the stem cell surface and that the cellular morphology was conserved, as proof of the validity of this method. The quantitative analysis by means of FMR is necessary for determining the signal intensity for the study of molecular imaging by means of magnetic resonance imaging (MRI).
Resumo:
It is known that some metal salts can inhibit matrix metalloproteinase (MMP) activity, but the effect of iron has not been tested yet. On the other hand, it has recently been suggested that MMP inhibition might influence dentine erosion. Based on this, the aims of this study were: (1) to test in vitro the effect of FeSO(4) on MMP-2 and -9 activity, and (2) to evaluate in situ the effect of FeSO(4) gel on dentine erosion. MMP-2 and -9 activities were analysed zymographically in buffers containing FeSO(4) in concentrations ranging between 0.05 and 1.5 mmol/l or not. Volunteers (n = 10) wore devices containing bovine dentine blocks (n = 60) previously treated with the following gel treatments: FeSO(4) (1 mmol/l FeSO(4)), F (NaF 1.23%; positive control) and placebo (negative control). The gels were applied once and removed after 1 min. Erosion was performed extraorally with Coca-Cola 4 times per day for 5 min over 5 days. Dentine wear was evaluated by profilometry. The data were analysed by Kruskal-Wallis and Dunn`s tests (p < 0.05). FeSO(4) inhibited both MMP-2 (IC(50) = 0.75 mmol/l) and MMP-9 (IC(50) = 0.50 mmol/l) activities. In the in situ experiment, the mean wear (+/- SD) found for the F gel (0.79 8 +/- 0.08 mu m) was significantly reduced in more than 50% when compared to the placebo gel (1.77 +/- 0.33 mu m), but the FeSO(4) gel completely inhibited the wear (0.05 +/- 0.02 mu m). Since FeSO(4) was able to inhibit MMP in vitro, it is possible that the prevention of dentine wear by the FeSO(4) gel in situ might be due to MMP inhibition, which should be investigated in further studies. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Background: The aim of this study was to evaluate the preventive effect in vitro of experimental gel containing iron and/or fluoride on the erosion of bovine enamel. Methods: To standardize the blocks (n = 80), specimens (4 x 4 mm) were previously selected to measure the initial microhardness. The blocks were randomly allocated into four groups of 20 samples each: C (control, placebo gel); F (fluoride gel, 1.23% NaF); Fe (iron gel, 10 mmol/L FeSO(4)) and F + Fe (fluoride + iron gel). The gels were applied and removed after 1 minute. The blocks were then submitted to six alternating remineralization and demineralization cycles. The beverage Coca-Cola (R) (10 minutes, 30 mL) was used for demineralization, and artificial saliva (1 hour) for remineralization. The effect of erosion was measured by wear analysis (profilometry). Data were analysed by ANOVA and the Tukey test for individual comparisons (p <0.05). Results: The mean wear (+/- SD, mu m) was C: 0.94 +/- 0.22; F: 0.55 +/- 0.12; Fe: 0.49 +/- 0.11 and F + Fe: 0.55 +/- 0.13. When the experimental gels were used, there was statistically significant reduction in enamel wear in comparison with the control (p <0.001). However, the experimental gels did not differ significantly among them. Conclusions: The gels containing iron with or without fluoride are capable of interfering with the dissolution dental enamel in the presence of erosive challenge.
Resumo:
Objective: The aim of this study was to evaluate, in vitro, the effect of an experimental varnish containing iron on the dissolution of bovine enamel by carbonated beverage. Methods: Eighty specimens were randomly allocated to four groups (n = 20 per group), according to the following treatments: Fe varnish (FeV, 10 mmoL/L Fe), F varnish (FV, 2.71% F), placebo varnish (PV) and control (not treated, NT). The varnishes were applied in a thin layer and removed after 6 h. Then, the samples were submitted to six cycles, alternating re- and demineralisation (only 1 day). Demineralisation was performed with the beverage Coca-Cola (R) (10 min, 30 mL/block) and remineralisation with artificial saliva for I h. In order to determine the amount of enamel dissolved, the wear was analysed by profilometry. Data were analysed by ANOVA and Tukey`s test (p < 0.05). Results: The mean wear (+/- S.E.) was significantly lesser for the FeV (0.451 +/- 0.018 mu m) when compared to the other treatments. The FV caused significantly less wear (0.554 +/- 0.022 mu m) when compared to PV (0.991 +/- 0.039 mu m) and NT (1.014 +/- 0.033), which did not significantly differ from each other. Conclusions: The results suggest that the iron varnish can interfere with the dissolution of dental enamel in the presence of acidic beverages. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum . Dimethyl sulphide dehydrogenase was shown to contain bis (molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdop-terin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB , ddhD and ddhC . DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c (2) mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.
Resumo:
The iron(III) complexes [H(EtOH)][FeCl2(L)(2)] (1), [H(2)bipy](1/2)[FeCl2(L)(2)].DMF (2) and [FeCl2(L)(2,2'-bipy)] (3) (L = 3-amino-2-pyrazinecarboxylate; H(2)bipy = doubly protonated 4,4'-bipyridine; 2,2'-bipy = 2,2'-bipyridine, DMF = dimethylformamide) have been synthesized and fully characterized by IR, elemental and single-crystal X-ray diffraction analyses, as well as by electrochemical methods. Complexes 1 and 2 have similar mononuclear structures containing different guest molecules (protonated ethanol for 1 and doubly protonated 4,4'-bipyridine for 2) in their lattices, whereas the complex 3 has one 3-amino-2-pyrazinecarboxylate and a 2,2'-bipyridine ligand. They show a high catalytic activity for the low power (10 W) solvent-free microwave assisted peroxidative oxidation of 1-phenylethanol, leading, in the presence of TEMPO, to quantitative yields of acetophenone [TOFs up to 8.1 x 10(3) h(-1), (3)] after 1 h. Moreover, the catalysts are of easy recovery and reused, at least for four consecutive cycles, maintaining 83 % of the initial activity and concomitant rather high selectivity. 3-Amino-2-pyrazinecarboxylic acid is used to synthesize three new iron(III) complexes which act as heterogeneous catalysts for the solvent-free microwave-assisted peroxidative oxidation of 1-phenylethanol.
Resumo:
The expression of iron regulated proteins (IRPs) in vitro has been obtained in the past by adding iron chelators to the culture after bacterial growth, in the presence of an organic iron source. We have investigated aspects concerning full expression of the meningococcal IRPs during normal growth, in defined conditions using Catlin medium, Mueller Hinton and Tryptic Soy Broth (TSB). The expression of IRPs varied between different strains with respect to Ethylenediamine Di-ortho-Hidroxy-phenyl-acetic acid (EDDA) concentrations, and according to culture medium, and also between different lots of TSB. For each strain, a specific set of IRPs were expressed and higher EDDA concentrations, or addition of glucose, or use of different culture media did not resulted in a differential expression of IRPs. We were not able to grow N. meningitidis under normal growth conditions using Desferal. We looked for a good yield of outer membrane vesicles (OMVs) expressing IRPs in iron-deficient Catlin medium containing EDDA and Hemin. Culture for 32 h at 30ºC after growing for 16 h at 37ºC supported good bacterial growth. Bacterial lysis was noted after additional 24 h at 30ºC. Approximately 4 times more OMVs was recoverable from a culture supernatant after 24 h at 30ºC than from the cells after 16 h at 37ºC. The IRP were as well expressed in OMVs from culture supernatant obtained after 24 h at 30ºC as from the cells after 16 h at 37ºC.
Resumo:
J Biol Inorg Chem (2004) 9: 145–151 DOI 10.1007/s00775-003-0506-z
Resumo:
This project aimed to engineer new T2 MRI contrast agents for cell labeling based on formulations containing monodisperse iron oxide magnetic nanoparticles (MNP) coated with natural and synthetic polymers. Monodisperse MNP capped with hydrophobic ligands were synthesized by a thermal decomposition method, and further stabilized in aqueous media with citric acid or meso-2,3-dimercaptosuccinic acid (DMSA) through a ligand exchange reaction. Hydrophilic MNP-DMSA, with optimal hydrodynamic size distribution, colloidal stability and magnetic properties, were used for further functionalization with different coating materials. A covalent coupling strategy was devised to bind the biopolymer gum Arabic (GA) onto MNPDMSA and produce an efficient contrast agent, which enhanced cellular uptake in human colorectal carcinoma cells (HCT116 cell line) compared to uncoated MNP-DMSA. A similar protocol was employed to coat MNP-DMSA with a novel biopolymer produced by a biotechnological process, the exopolysaccharide (EPS) Fucopol. Similar to MNP-DMSA-GA, MNP-DMSA-EPS improved cellular uptake in HCT116 cells compared to MNP-DMSA. However, MNP-DMSA-EPS were particularly efficient towards the neural stem/progenitor cell line ReNcell VM, for which a better iron dose-dependent MRI contrast enhancement was obtained at low iron concentrations and short incubation times. A combination of synthetic and biological coating materials was also explored in this project, to design a dynamic tumortargeting nanoprobe activated by the acidic pH of tumors. The pH-dependent affinity pair neutravidin/iminobiotin, was combined in a multilayer architecture with the synthetic polymers poy-L-lysine and poly(ethylene glycol) and yielded an efficient MRI nanoprobe with ability to distinguish cells cultured in acidic pH conditions form cells cultured in physiological pH conditions.
Resumo:
Tese de Doutoramento em Biologia das Plantas - MAP BIOPLANT
Resumo:
A straightforward route is proposed for the multi-gram scale synthesis of heterobifunctional poly(ethylene glycol) (PEG) oligomers containing combination of triethyloxysilane extremity for surface modification of metal oxides and amino or azido active end groups for further functionalization. The suitability of these PEG derivatives to be conjugated to nanomaterials was shown by pegylation of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (NPs), followed by functionalization with small peptide ligands for biomedical applications.
Resumo:
We report the results of magnetization and 57Fe Mössbauer spectroscopy measurements performed in the temperature range 5-300 K on composites containing iron¿oxide nanoparticles encased in polystyrene type resins. After carrying out a suitable field treatment in order to decouple the particles from the matrix, a fraction of the particles freely rotate in response to an applied magnetic field
Resumo:
Bakery products such as biscuits, cookies, and pastries represent a good medium for iron fortification in food products, since they are consumed by a large proportion of the population at risk of developing iron deficiency anemia, mainly children. The drawback, however, is that iron fortification can promote oxidation. To assess the extent of this, palm oil added with heme iron and different antioxidants was used as a model for evaluating the oxidative stability of some bakery products, such as baked goods containing chocolate. The palm oil samples were heated at 220°C for 10 min to mimic the conditions found during a typical baking processing. The selected antioxidants were a free radical scavenger (tocopherol extract (TE), 0 and 500 mg/kg), an oxygen scavenger (ascorbyl palmitate (AP), 0 and 500 mg/kg), and a chelating agent (citric acid (CA), 0 and 300 mg/kg). These antioxidants were combined using a factorial design and were compared to a control sample, which was not supplemented with antioxidants. Primary (peroxide value and lipid hydroperoxide content) and secondary oxidation parameters (p-anisidine value, p-AnV) were monitored over a period of 200 days in storage at room temperature. The combination of AP and CA was the most effective treatment in delaying the onset of oxidation. TE was not effective in preventing oxidation. The p-AnV did not increase during the storage period, indicating that this oxidation marker was not suitable for monitoring oxidation in this model.