921 resultados para Invariance Principle
Resumo:
Using the method of infinitesimal transformations, a 6-parameter family of exact solutions describing nonlinear sheared flows with a free surface are found. These solutions are a hybrid between the earlier self-propagating simple wave solutions of Freeman, and decaying solutions of Sachdev. Simple wave solutions are also derived via the method of infinitesimal transformations. Incomplete beta functions seem to characterize these (nonlinear) sheared flows in the absence of critical levels.
Resumo:
This report is the result of a small-scale experiment looking at improving methods for evaluating environmental laws. The objective in this research was to evaluate the effectiveness of the precautionary principle – an accepted principle of international environmental law – in the context of Australia’s endangered species. Two case studies were selected by our team: the (Great) White Shark and an endangered native Australian plant known as Tylophora Linearis.
Resumo:
Rae and Davidson have found a striking connection between the averaging method generalised by Kruskal and the diagram technique used by the Brussels school in statistical mechanics. They have considered conservative systems whose evolution is governed by the Liouville equation. In this paper we have considered a class of dissipative systems whose evolution is governed not by the Liouville equation but by the last-multiplier equation of Jacobi whose Fourier transform has been shown to be the Hopf equation. The application of the diagram technique to the interaction representation of the Jacobi equation reveals the presence of two kinds of interactions, namely the transition from one mode to another and the persistence of a mode. The first kind occurs in the treatment of conservative systems while the latter type is unique to dissipative fields and is precisely the one that determines the asymptotic Jacobi equation. The dynamical equations of motion equivalent to this limiting Jacobi equation have been shown to be the same as averaged equations.
Resumo:
A new generalisation of Einstein’s theory is proposed which is invariant under conformal mappings. Two scalar fields are introduced in addition to the metric tensor field, so that two special choices of gauge are available for physical interpretation, the ‘Einstein gauge’ and the ‘atomic gauge’. The theory is not unique but contains two adjustable parameters ζ anda. Witha=1 the theory viewed from the atomic gauge is Brans-Dicke theory (ω=−3/2+ζ/4). Any other choice ofa leads to a creation-field theory. In particular the theory given by the choicea=−3 possesses a cosmological solution satisfying Dirac’s ‘large numbers’ hypothesis.
Resumo:
The aim of this paper is to propose design principles for ambient intelligence (AmI) environments. The question we are investigating is how these environments can be designed to support a group to be able to carry out common goal-oriented activities. The approach we are taking in answering this question is informed by the concept of collective intelligence (CI). We are applying the concept of CI to AmI as we have found it works well in biological and social systems. Examples from nature demonstrate the power of CI stimulated by implicit cues in the environment. We use these examples to derive design principles for AmI environments. By applying these design principles to a concrete scenario, we are able to propose ways to help decrease environmental pollution within urban areas.
Resumo:
The question at issue in this dissertation is the epistemic role played by ecological generalizations and models. I investigate and analyze such properties of generalizations as lawlikeness, invariance, and stability, and I ask which of these properties are relevant in the context of scientific explanations. I will claim that there are generalizable and reliable causal explanations in ecology by generalizations, which are invariant and stable. An invariant generalization continues to hold or be valid under a special change called an intervention that changes the value of its variables. Whether a generalization remains invariant during its interventions is the criterion that determines whether it is explanatory. A generalization can be invariant and explanatory regardless of its lawlike status. Stability deals with a generality that has to do with holding of a generalization in possible background conditions. The more stable a generalization, the less dependent it is on background conditions to remain true. Although it is invariance rather than stability of generalizations that furnishes us with explanatory generalizations, there is an important function that stability has in this context of explanations, namely, stability furnishes us with extrapolability and reliability of scientific explanations. I also discuss non-empirical investigations of models that I call robustness and sensitivity analyses. I call sensitivity analyses investigations in which one model is studied with regard to its stability conditions by making changes and variations to the values of the model s parameters. As a general definition of robustness analyses I propose investigations of variations in modeling assumptions of different models of the same phenomenon in which the focus is on whether they produce similar or convergent results or not. Robustness and sensitivity analyses are powerful tools for studying the conditions and assumptions where models break down and they are especially powerful in pointing out reasons as to why they do this. They show which conditions or assumptions the results of models depend on. Key words: ecology, generalizations, invariance, lawlikeness, philosophy of science, robustness, explanation, models, stability
Resumo:
We discuss symmetries and scenarios leading to quasi-degenerate neutrinos in type I seesaw models. The existence of degeneracy in the present approach is not linked to any specific structure for the Dirac neutrino Yukawa coupling matrix y(D) and holds in general. Basic input is the application of the minimal flavour violation principle to the leptonic sector. Generalizing this principle, we assume that the structure of the right-handed neutrino mass matrix is determined by y(D) and the charged lepton Yukawa coupling matrix y(l) in an effective theory invariant under specific groups G(F) contained in the full symmetry group of the kinetic energy terms. G(F) invariance also leads to specific structure for the departure from degeneracy. The neutrino mass matrix (with degenerate mass m(0)) resulting after seesaw mechanism has a simple form Mv approximate to m(0)(I - py(l)y(l)(T)) in one particular scenario based on supersymmetry. This form is shown tolead to correct description of neutrino masses and mixing angles. The thermal leptogenesis after inclusion of flavour effects can account for the observed baryon asymmetry of the universe within the present scenario. Rates for lepton flavour violating processes can occur at observable levels in the supersymmetric version of the scenario. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
We establish the Poincaré invariance of anomalous gauge theories in two dimensions, for both the Abelian and non-Abelian cases, in the canonical Hamiltonian formalism. It is shown that, despite the noncovariant appearance of the constraints of these theories, Poincaré generators can be constructed which obey the correct algebra and yield the correct transformations in the constrained space.
Resumo:
We prove the spectral invariance of SG pseudo-differential operators on L-P(R-n), 1 < p < infinity, by using the equivalence of ellipticity and Fredholmness of SG pseudo-differential operators on L-p(R-n), 1 < p < infinity. A key ingredient in the proof is the spectral invariance of SC pseudo-differential operators on L-2(R-n).
Resumo:
The principle of operation of a dual current source converter is briefly explained. The combination of two single current source converters (SCSC) to form a ``dual (duplex) current source converter'' (DCSC) is proposed. The DCSC is shown to have the following merits: 1) it retains all the advantages of the SCSC; 2) it reduces the harmonic content of the current waveform considerably; and 3) since the load current is shared equally between two current source converters, ratings of the individual components employed in the circuit are considerably lowered. A DCSC can be an attractive choice for sophisticated large horsepower drives where a good performance of the drive rather than cost is a prime factor. An open-loop control scheme employing the DCSC for an ac motor drive has been successfully implemented in the laboratory. Oscillograms of the improved load current waveforms are shown.
Resumo:
The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foias. Just as a contraction is related to the Szego kernel k(S) (z, w) = (1 - z (w) over tilde)(-1) for |z|, |w| < 1, by means of (1/k(S))(T,T*) >= 0, we consider an arbitrary open connected domain Omega in C-n, a complete Pick kernel k on Omega and a tuple T = (T-1, ..., T-n) of commuting bounded operators on a complex separable Hilbert space H such that (1/k)(T,T*) >= 0. For a complete Pick kernel the 1/k functional calculus makes sense in a beautiful way. It turns out that the model theory works very well and a characteristic function can be associated with T. Moreover, the characteristic function is then a complete unitary invariant for a suitable class of tuples T.
Resumo:
A feature common to many adaptive systems for identification and control is the adjustment.of gain parameters in a manner ensuring the stability of the overall system. This paper puts forward a principle which assures such a result for arbitrary systems which are linear and time invariant except for the adjustable parameters. The principle only demands that a transfer function be positive real. This transfer function dependent on the structure of the system with respect to the parameters. Several examples from adaptive identification, control and observer schemes are given as illustrations of the conceptual simplification provided by the structural principle.
Resumo:
Proper formulation of stress-strain relations, particularly in tension-compression situations for isotropic biomodulus materials, is an unresolved problem. Ambartsumyan's model [8] and Jones' weighted compliance matrix model [9] do not satisfy the principle of coordinate invariance. Shapiro's first stress invariant model [10] is too simple a model to describe the behavior of real materials. In fact, Rigbi [13] has raised a question about the compatibility of bimodularity with isotropy in a solid. Medri [2] has opined that linear principal strain-principal stress relations are fictitious, and warned that the bilinear approximation of uniaxial stress-strain behavior leads to ill-working bimodulus material model under combined loading. In the present work, a general bilinear constitutive model has been presented and described in biaxial principal stress plane with zonewise linear principal strain-principal stress relations. Elastic coefficients in the model are characterized based on the signs of (i) principal stresses, (ii) principal strains, and (iii) on the value of strain energy component ratio ER greater than or less than unity. The last criterion is used in tension-compression and compression-tension situations to account for different shear moduli in pure shear stress and pure shear strain states as well as unequal cross compliances.