830 resultados para Internet-of-Things, Wireless Sensor Network, CoAP
Distributed and compressed MIKEY mode to secure end-to-end communications in the Internet of things.
Resumo:
Multimedia Internet KEYing protocol (MIKEY) aims at establishing secure credentials between two communicating entities. However, existing MIKEY modes fail to meet the requirements of low-power and low-processing devices. To address this issue, we combine two previously proposed approaches to introduce a new distributed and compressed MIKEY mode for the Internet of Things. Indeed, relying on a cooperative approach, a set of third parties is used to discharge the constrained nodes from heavy computational operations. Doing so, the preshared mode is used in the constrained part of network, while the public key mode is used in the unconstrained part of the network. Furthermore, to mitigate the communication cost we introduce a new header compression scheme that reduces the size of MIKEY’s header from 12 Bytes to 3 Bytes in the best compression case. Preliminary results show that our proposed mode is energy preserving whereas its security properties are preserved untouched.
Resumo:
L'Internet of Things (IoT) è oggetto di grande interesse per la ricerca e per l'industria. Le numerose tecnologie che sono state sviluppate rendono possibile la creazione di nuovi e utili servizi, ma introducono problemi legati alla reciproca incompatibilità. Nell'elaborato si analizza nel dettaglio questa situazione e si descrive l'implementazione di un sistema che ha come obiettivo la realizzazione di una rete composta da dispositivi che fanno uso di tecnologie differenti. Il progetto usa un Raspberry Pi come router, il cui scopo è quello di gestire le differenze fra gli standard di comunicazione utilizzati. Le tecnologie wireless supportate sono: WiFi, Bluetooth, ZigBee, nRF24L01 e moduli radio 433MHz. Sulla rete cosi formata è inoltre possibile lo sviluppo di applicazioni IoT, grazie alle logiche di funzionamento messe a disposizione dal sistema.
Resumo:
Wireless Sensor Networks (WSNs) are widely used for various civilian and military applications, and thus have attracted significant interest in recent years. This work investigates the important problem of optimal deployment of WSNs in terms of coverage and energy consumption. Five deployment algorithms are developed for maximal sensing range and minimal energy consumption in order to provide optimal sensing coverage and maximum lifetime. Also, all developed algorithms include self-healing capabilities in order to restore the operation of WSNs after a number of nodes have become inoperative. Two centralized optimization algorithms are developed, one based on Genetic Algorithms (GAs) and one based on Particle Swarm Optimization (PSO). Both optimization algorithms use powerful central nodes to calculate and obtain the global optimum outcomes. The GA is used to determine the optimal tradeoff between network coverage and overall distance travelled by fixed range sensors. The PSO algorithm is used to ensure 100% network coverage and minimize the energy consumed by mobile and range-adjustable sensors. Up to 30% - 90% energy savings can be provided in different scenarios by using the developed optimization algorithms thereby extending the lifetime of the sensor by 1.4 to 10 times. Three distributed optimization algorithms are also developed to relocate the sensors and optimize the coverage of networks with more stringent design and cost constraints. Each algorithm is cooperatively executed by all sensors to achieve better coverage. Two of our algorithms use the relative positions between sensors to optimize the coverage and energy savings. They provide 20% to 25% more energy savings than existing solutions. Our third algorithm is developed for networks without self-localization capabilities and supports the optimal deployment of such networks without requiring the use of expensive geolocation hardware or energy consuming localization algorithms. This is important for indoor monitoring applications since current localization algorithms cannot provide good accuracy for sensor relocation algorithms in such indoor environments. Also, no sensor redeployment algorithms, which can operate without self-localization systems, developed before our work.
Resumo:
Secure group communication is a paradigm that primarily designates one-to-many communication security. The proposed works relevant to secure group communication have predominantly considered the whole network as being a single group managed by a central powerful node capable of supporting heavy communication, computation and storage cost. However, a typical Wireless Sensor Network (WSN) may contain several groups, and each one is maintained by a sensor node (the group controller) with constrained resources. Moreover, the previously proposed schemes require a multicast routing support to deliver the rekeying messages. Nevertheless, multicast routing can incur heavy storage and communication overheads in the case of a wireless sensor network. Due to these two major limitations, we have reckoned it necessary to propose a new secure group communication with a lightweight rekeying process. Our proposal overcomes the two limitations mentioned above, and can be applied to a homogeneous WSN with resource-constrained nodes with no need for a multicast routing support. Actually, the analysis and simulation results have clearly demonstrated that our scheme outperforms the previous well-known solutions.
Resumo:
Disaster management is one of the most relevant application fields of wireless sensor networks. In this application, the role of the sensor network usually consists of obtaining a representation or a model of a physical phenomenon spreading through the affected area. In this work we focus on forest firefighting operations, proposing three fully distributed ways for approximating the actual shape of the fire. In the simplest approach, a circular burnt area is assumed around each node that has detected the fire and the union of these circles gives the overall fire’s shape. However, as this approach makes an intensive use of the wireless sensor network resources, we have proposed to incorporate two in-network aggregation techniques, which do not require considering the complete set of fire detections. The first technique models the fire by means of a complex shape composed of multiple convex hulls representing different burning areas, while the second technique uses a set of arbitrary polygons. Performance evaluation of realistic fire models on computer simulations reveals that the method based on arbitrary polygons obtains an improvement of 20% in terms of accuracy of the fire shape approximation, reducing the overhead in-network resources to 10% in the best case.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
This paper presents a new approach of pre-defined profiles, based in different voltage and current values, to control the charging and discharging processes of batteries in order to assess their performance. This new approach was implemented in a prototype that was specially developed for such purpose. This prototype is a smart power electronics platform that allows to perform batteries analysis and to control the charging and discharging processes through a web application using pre-defined profiles. This platform was developed aiming to test different batteries technologies. Considering the relevance of the energy storage area based in batteries, especially for the batteries applied to electric mobility systems, this platform allows to perform controlled tests to the batteries, in order to analyze the batteries performance under different scenarios of operation. Besides the results obtained with the batteries, this work also intends to produce results that can contribute to an involvement in the strengthening of the Internet-of-Things.
Resumo:
Trabajo de final de carrera enfocado a la simulación de una WSN (Wireless Sensors Networks) mediante el programa Contiki 2.7 y el SO Ubuntu. La idea global del proyecto es conseguir simular un entorno con nodos sensores y, a posteriori, comprobar su correcto funcionamiento en motas reales, comprobando los resultados obtenidos en ambos entornos. De esta manera se puede facilitar la puesta en marcha de este tipo de redes inalámbricas en una aplicación real.
Resumo:
IBM provide a comprehensive academic initiative, (http://www-304.ibm.com/ibm/university/academic/pub/page/academic_initiative) to universities, providing them free of charge access to a wide range of IBM Software. As part of this initiative we are currently offering free IBM Bluemix accounts, either to be used within a course, or for students to use for personal skills development. IBM Bluemix provides a comprehensive cloud based platform as a service solution set which includes the ability to quickly and easily integrate data from devices from Internet of Things ( IoT) solutions to develop and run productive and user focused web and mobile applications. If you would be interested in hearing more about IBM and Internet of Things or you would like to discuss prospective research projects that you feel would operate well in this environment, please come along to the seminar!
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
We model the large scale fading of wireless THz communications links deployed in a metropolitan area taking into account reception through direct line of sight, ground or wall reflection and diffraction. The movement of the receiver in the three dimensions is modelled by an autonomous dynamic linear system in state-space whereas the geometric relations involved in the attenuation and multi-path propagation of the electric field are described by a static non-linear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a Wiener model from time-domain measurements of the field intensity.
Resumo:
The good efficiency in a sewage treatment plant (WWTP) is a great importance to the environment. The management of electromechanical equipment installed in these stations is a major challenge due to the fact that they are installed on areas of difficult access and maintenance unhealthy and making the time for the correction of any faults is extended. This paper proposes the development of a Wireless Sensor Network (WSN), in order to monitor electromechanical equipment, allowing the Concessionaire a predictive control in real time. The design of a wireless sensors network for monitoring equipment requires not only the development and assembly of the sensor modules, but must also include the development of software for managing the data collected. Thus, this work includes a Zigbee WSN, small, adapted for monitoring of electromechanical equipment and environmental conditions of a WWTP, type stabilization pond, installed in an area of approximately 0.15 km 2 and the average flow of 320 liters of treatment per second. The experimental results show that this monitoring system can perform with the collection of parameters of performance and quality assessment at the station.