995 resultados para Interacting system
Resumo:
Semi-supervised learning is a classification paradigm in which just a few labeled instances are available for the training process. To overcome this small amount of initial label information, the information provided by the unlabeled instances is also considered. In this paper, we propose a nature-inspired semi-supervised learning technique based on attraction forces. Instances are represented as points in a k-dimensional space, and the movement of data points is modeled as a dynamical system. As the system runs, data items with the same label cooperate with each other, and data items with different labels compete among them to attract unlabeled points by applying a specific force function. In this way, all unlabeled data items can be classified when the system reaches its stable state. Stability analysis for the proposed dynamical system is performed and some heuristics are proposed for parameter setting. Simulation results show that the proposed technique achieves good classification results on artificial data sets and is comparable to well-known semi-supervised techniques using benchmark data sets.
Resumo:
We describe the interactions between monocyte-derived DCs, in different stages of maturation, with allogeneic T lymphocytes in a 3D system. Maturation of DCs increased their interaction time with T lymphocytes from 43 to 138 minutes. The average motility of T lymphocytes interacting or not with DCs was also affected, varying from 0.21μm-0.37μm/minute to 0.36μm- 0.52μm/minute. These data indicate that this 3D BiotekTM scaffold enables interactions between lymphocytes and DCs at different stages of maturation and may be useful for the characterization of these interactions, the cellular subtypes and patterns of response induced.
Resumo:
This thesis reports on the creation and analysis of many-body states of interacting fermionic atoms in optical lattices. The realized system can be described by the Fermi-Hubbard hamiltonian, which is an important model for correlated electrons in modern condensed matter physics. In this way, ultra-cold atoms can be utilized as a quantum simulator to study solid state phenomena. The use of a Feshbach resonance in combination with a blue-detuned optical lattice and a red-detuned dipole trap enables an independent control over all relevant parameters in the many-body hamiltonian. By measuring the in-situ density distribution and doublon fraction it has been possible to identify both metallic and insulating phases in the repulsive Hubbard model, including the experimental observation of the fermionic Mott insulator. In the attractive case, the appearance of strong correlations has been detected via an anomalous expansion of the cloud that is caused by the formation of non-condensed pairs. By monitoring the in-situ density distribution of initially localized atoms during the free expansion in a homogeneous optical lattice, a strong influence of interactions on the out-of-equilibrium dynamics within the Hubbard model has been found. The reported experiments pave the way for future studies on magnetic order and fermionic superfluidity in a clean and well-controlled experimental system.
Resumo:
This thesis reports on the realization, characterization and analysis of ultracold bosonic and fermionic atoms in three-dimensional optical lattice potentials. Ultracold quantum gases in optical lattices can be regarded as ideal model systems to investigate quantum many-body physics. In this work interacting ensembles of bosonic 87Rb and fermionic 40K atoms are employed to study equilibrium phases and nonequilibrium dynamics. The investigations are enabled by a versatile experimental setup, whose core feature is a blue-detuned optical lattice that is combined with Feshbach resonances and a red-detuned dipole trap to allow for independent control of tunneling, interactions and external confinement. The Fermi-Hubbard model, which plays a central role in the theoretical description of strongly correlated electrons, is experimentally realized by loading interacting fermionic spin mixtures into the optical lattice. Using phase-contrast imaging the in-situ size of the atomic density distribution is measured, which allows to extract the global compressibility of the many-body state as a function of interaction and external confinement. Thereby, metallic and insulating phases are clearly identified. At strongly repulsive interaction, a vanishing compressibility and suppression of doubly occupied lattice sites signal the emergence of a fermionic Mott insulator. In a second series of experiments interaction effects in bosonic lattice quantum gases are analyzed. Typically, interactions between microscopic particles are described as two-body interactions. As such they are also contained in the single-band Bose-Hubbard model. However, our measurements demonstrate the presence of multi-body interactions that effectively emerge via virtual transitions of atoms to higher lattice bands. These findings are enabled by the development of a novel atom optical measurement technique: In quantum phase revival spectroscopy periodic collapse and revival dynamics of the bosonic matter wave field are induced. The frequencies of the dynamics are directly related to the on-site interaction energies of atomic Fock states and can be read out with high precision. The third part of this work deals with mixtures of bosons and fermions in optical lattices, in which the interspecies interactions are accurately controlled by means of a Feshbach resonance. Studies of the equilibrium phases show that the bosonic superfluid to Mott insulator transition is shifted towards lower lattice depths when bosons and fermions interact attractively. This observation is further analyzed by applying quantum phase revival spectroscopy to few-body systems consisting of a single fermion and a coherent bosonic field on individual lattice sites. In addition to the direct measurement of Bose-Fermi interaction energies, Bose-Bose interactions are proven to be modified by the presence of a fermion. This renormalization of bosonic interaction energies can explain the shift of the Mott insulator transition. The experiments of this thesis lay important foundations for future studies of quantum magnetism with fermionic spin mixtures as well as for the realization of complex quantum phases with Bose-Fermi mixtures. They furthermore point towards physics that reaches beyond the single-band Hubbard model.
Resumo:
Die Untersuchung von dissipativen Quantensystemen erm¨oglicht es, Quantenph¨anomene auch auf makroskopischen L¨angenskalen zu beobachten. Das in dieser Dissertation gew¨ahlte mikroskopische Modell erlaubt es, den bisher nur ph¨anomenologisch zug¨anglichen Effekt der Quantendissipation mathematisch und physikalisch herzuleiten und zu untersuchen. Bei dem betrachteten mikroskopischen Modell handelt es sich um eine 1-dimensionale Kette von harmonischen Freiheitsgraden, die sowohl untereinander als auch an r anharmonische Freiheitsgrade gekoppelt sind. Die F¨alle einer, respektive zwei anharmonischer Bindungen werden in dieser Arbeit explizit betrachtet. Hierf¨ur wird eine analytische Trennung der harmonischen von den anharmonischen Freiheitsgraden auf zwei verschiedenen Wegen durchgef¨uhrt. Das anharmonische Potential wird als symmetrisches Doppelmuldenpotential gew¨ahlt, welches mit Hilfe der Wick Rotation die Berechnung der ¨Uberg¨ange zwischen beiden Minima erlaubt. Das Eliminieren der harmonischen Freiheitsgrade erfolgt mit Hilfe des wohlbekannten Feynman-Vernon Pfadintegral-Formalismus [21]. In dieser Arbeit wird zuerst die Positionsabh¨angigkeit einer anharmonischen Bindung im Tunnelverhalten untersucht. F¨ur den Fall einer fernab von den R¨andern lokalisierten anharmonischen Bindung wird ein Ohmsches dissipatives Tunneln gefunden, was bei der Temperatur T = 0 zu einem Phasen¨ubergang in Abh¨angigkeit einer kritischen Kopplungskonstanten Ccrit f¨uhrt. Dieser Phasen¨ubergang wurde bereits in rein ph¨anomenologisches Modellen mit Ohmscher Dissipation durch das Abbilden des Systems auf das Ising-Modell [26] erkl¨art. Wenn die anharmonische Bindung jedoch an einem der R¨ander der makroskopisch grossen Kette liegt, tritt nach einer vom Abstand der beiden anharmonischen Bindungen abh¨angigen Zeit tD ein ¨Ubergang von Ohmscher zu super- Ohmscher Dissipation auf, welche im Kern KM(τ ) klar sichtbar ist. F¨ur zwei anharmonische Bindungen spielt deren indirekteWechselwirkung eine entscheidende Rolle. Es wird gezeigt, dass der Abstand D beider Bindungen und die Wahl des Anfangs- und Endzustandes die Dissipation bestimmt. Unter der Annahme, dass beide anharmonischen Bindung gleichzeitig tunneln, wird eine Tunnelwahrscheinlichkeit p(t) analog zu [14], jedoch f¨ur zwei anharmonische Bindungen, berechnet. Als Resultat erhalten wir entweder Ohmsche Dissipation f¨ur den Fall, dass beide anharmonischen Bindungen ihre Gesamtl¨ange ¨andern, oder super-Ohmsche Dissipation, wenn beide anharmonischen Bindungen durch das Tunneln ihre Gesamtl¨ange nicht ¨andern.
Resumo:
Energy transfer between the interacting waves in a distributed Brillouin sensor can result in a distorted measurement of the local Brillouin gain spectrum, leading to systematic errors. It is demonstrated that this depletion effect can be precisely modelled. This has been validated by experimental tests in an excellent quantitative agreement. Strict guidelines can be enunciated from the model to make the impact of depletion negligible, for any type and any length of fiber. (C) 2013 Optical Society of America
Resumo:
Acute psychological stress can produce significant hemoconcentration as well as prothrombotic changes in blood, both of which may have potentially harmful effects on the cardiovascular system. It is unclear whether these effects are independent or have influence on each other.
Resumo:
The Bcr-Abl fusion oncogene which resulted from a balanced reciprocal translocation between chromosome 9 and 22, t(9;22)(q11, q34), encodes a 210 KD elevated tyrosine specific protein kinase that is found in more than 95 percent of chronic myelogenous leukemia patients (CML). Increase of level of phosphorylation of tyrosine is observed on cell cycle regulatory proteins in cells overexpressing the Bcr-Abl oncogene, which activates multiple signaling pathways. In addition, distinct signals are required for transforming susceptible fibroblast and hematopoietic cells, and the minimal signals essential for transforming hematopoietic cells are yet to be defined. In the present study, we first established a tetracycline repressible p210$\rm\sp{bcr-abl}$ expression system in a murine myeloid cell line 32D c13, which depends on IL3 to grow in the presence of tetracycline and proliferate independent of IL3 in the absence of tetracycline. Interestingly, one of these sublines does not form tumors in athymic nude mice suggesting that these cells may not be completely transformed. These cells also exhibit a dose-dependent growth and expression of p210$\rm\sp{bcr-abl}$ at varying concentrations of tetracycline in the culture. However, p210$\rm\sp{bcr-abl}$ rescues IL3 deprivation induced apoptosis in a non-dose dependent fashion. DNA genotoxic damage induced by gamma-irradiation activates c-Abl tyrosine kinase, the cellular homologue of p210$\rm\sp{bcr-abl},$ and leads to activation of p38 MAP kinase in the cells. However, in the presence of p210$\rm\sp{bcr-abl}$ the irradiation failed to activate the p38 MAP kinase as examined by an antibody against phosphorylated p38 MAP kinase. Similarly, an altered tyrosine phosphorylation of the JAK1-STAT1 pathways was identified in cells constitutively overexpressing p210$\rm\sp{bcr-abl}.$ This may provided a molecular mechanism for altered therapeutic response of CML patients to IFN-$\alpha.$^ Bcr-Abl oncoprotein has multiple functional domains which have been identified by the work of others. The Bcr tetramerization domain, which may function to stabilize the association of the Bcr-Abl with actin filaments in p210$\rm\sp{bcr-abl}$ susceptible cells, are essential for transforming both fibroblast and hematopoietic cells. We designed a transcription unit encoding first 160 amino acids polypeptide of Bcr protein to test if this polypeptide can inhibit the transforming activity of the p210$\rm\sp{bcr-abl}$ oncoprotein in the 32D c13 cells. When this vector was transfected transiently along with the p210$\rm\sp{bcr-abl}$ expression vector, it can block the transforming activity of p210$\rm\sp{bcr-abl}.$ On the other hand, the retinoblastoma tumor suppressor protein (Rb), a naturally occurring negative regulator of the c-Abl kinase, the cellular homologue of Bcr-Abl oncoprotein, binds to and inhibits the c-Abl kinase in a cell cycle dependent manner. A polypeptide obtained from the carboxyl terminal end of the retinoblastoma tumor suppressor protein, in which the nuclear localization signal was mutated, was used to inhibit the kinase activity of the p210$\rm\sp{bcr-abl}$ in the cytoplasm. This polypeptide, called Rb MC-box, and its wild type form, Rb C-box, when overexpressed in the 32D cells are mainly localized in the cytoplasm. Cotransfection of a plasmid transcription unit coding for this polypeptide and the gene for the p210$\rm\sp{bcr-abl}$ resulted in reduced plating efficiency of p210$\rm\sp{bcr-abl}$ transfected IL3 independent 32D cells. Together, these results may lead to a molecular approach to therapy of CML and an in vitro assay system to identify new targets to which an inhibitory polypeptide transcription unit may be directed. ^
Resumo:
We have used the yeast three-hybrid system in a positive selection for mutants of the human histone hairpin-binding protein (HBP) capable of interacting with non-canonical hairpins and in a negative selection for loss-of-binding mutants. Interestingly, all mutations from the positive selection are located in the N- and C-terminal regions flanking a minimal RNA-binding domain (RBD) previously defined between amino acids 126 and 198. Further, in vitro binding studies demonstrate that the RBD, which shows no obvious similarity to other RNA-binding motifs, has a relaxed sequence specificity compared to full-length HBP, allowing it to bind to mutant hairpin RNAs not normally found in histone genes. These findings indicate that the sequences flanking the RBD are important for restricting binding to the highly conserved histone hairpin structure. Among the loss-of-binding mutations, about half are nonsense mutations distributed throughout the N-terminal part and the RBD whereas the other half are missense mutations restricted to the RBD. Whereas the nonsense mutations permit a more precise definition of the C-terminal border of the RBD, the missense mutations identify critical residues for RNA binding within the RBD.
Resumo:
Lodestar, a Drosophila maternal-effect gene, is essential for proper chromosome segregation during embryonic mitosis. Mutations in lodestar cause chromatin bridging in anaphase, preventing the sister chromatids from fully separating and leaving chromatin tangled at the metaphase plate. Drosophila lodestar protein was originally identified, in purified fractions of Drosophila Kc cell nuclear extracts, by its ability to suppress the generation of long RNA polymerase II transcripts. The human homolog of this protein (hLodestar) was cloned and studied in comparison to the Drosophila lodestar activities. The results of these studies show, similar to the Drosophila protein, hLodestar has dsDNA-dependent ATPase and transcription termination activity in vitro. hLodestar has also been shown to release RNA polymerase I and II stalled at a cyclobutane thymine dimer. Lodestar belongs to the SNF2 family of proteins, which are members of the DExH/D helicase super-family. The SNF2 family of proteins are believed to play a critical role in altering protein-DNA interactions in a variety of cellular contexts. We have recently isolated a human cDNA (hLodestar) that shares significant homology to the Drosophila lodestar gene. The 4.6 kb clone contains an open reading frame of 1162 amino acids, and shares 55% similarity and 46% identity to the Drosophila Lodestar protein sequence. Our studies looking for hLodestar interacting proteins revealed an association with CDC5L in the yeast two-hybrid system and co-immunoprecipitation experiments. CDC5L has been well documented to be a component of the spliceosome. Our data suggests hLodestar is involved in splicing through in vitro assembly and splicing reactions, in addition to its association with spliceosomes purified from HeLa nuclear extract. Although many other members of the DExH/D helicase super-family have been linked to splicing, this is the first SNF2 family member to be implicated in the splicing reaction. ^
Resumo:
Nitric oxide (NO) transduces most of its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC). Activation of sGC results in the production of 3′,5 ′-cyclic guanosine monophosphate (cGMP) from 5′ -guanosine triphosphate (GTP). In this thesis, we demonstrate a novel protein interaction between CCT (chaperonin containing t-complex polypeptide) subunit η and the α1β1 isoform of sGC. Using the yeast-two-hybrid system, CCTη was found to interact with the N-terminal portion of β1 subunit of sGC. This interaction was then confirmed in vitro with a co-immunoprecipitation from mouse brain. The interaction between these two proteins was further supported by a co-localization of the proteins within rat brain. Using the yeast-two-hybrid system, CCTη was found to bind to the N-terminal portion of sGC. In vitro assays with purified CCTη and Sf9 lysate expressing sGC resulted in a 33% inhibition of sodium nitroprusside (SNP)-stimulated sGC activity. The same assays were then performed using BAY41-2272, an NO-independent allosteric sGC activator, and CCTη had no effect on this activity. Furthermore, CCTη had no effect on the activity of αβCys105 sGC a constitutively active mutant that lacks a heme group. Of note is the fact that the full-length CCTη-expressing bacterial lysate inhibited the activity of sGC-expressing Sf9 lysate by 48% compared with GST alone. This indicates that the amino terminal 94 amino acids of CCTη are important to the inhibition of sGC activity. Lastly, a 45% inhibition of sGC activity by CCTη was seen in vivo in BE2 cells stably transfected with CCTη and treated with SNP. The fact that the inhibition of sGC was more pronounced with bacterial lysate expressing CCTη versus the purified CCTη implies that some factor in the bacterial lysate enhances the inhibitory effect of CCTη. Because the level of inhibition seen in bacterial lysate and in vivo experiments is similar, might imply that the factor that aids in CCTη effect on sGC is conserved. Together, these data suggest that CCTη is a novel type of sGC inhibitor that inhibits sGC by modifying the binding of NO to the heme group or the subsequent conformational changes induced by NO binding. ^
Resumo:
We show here that CO2 partial pressure (pCO2) and temperature significantly interact on coral physiology. The effects of increased pCO2 and temperature on photosynthesis, respiration and calcification rates were investigated in the scleractinian coral Stylophora pistillata. Cuttings were exposed to temperatures of 25°C or 28°C and to pCO2 values of ca. 460 or 760 muatm for 5 weeks. The contents of chlorophyll c2 and protein remained constant throughout the experiment, while the chlorophyll a content was significantly affected by temperature, and was higher under the 'high-temperature-high-pCO2' condition. The cell-specific density was higher at 'high pCO2' than at 'normal pCO2' (1.7 vs. 1.4). The net photosynthesis normalized per unit protein was affected by both temperature and pCO2, whereas respiration was not affected by the treatments. Calcification decreased by 50% when temperature and pCO2 were both elevated. Calcification under normal temperature did not change in response to an increased pCO2. This is not in agreement with numerous published papers that describe a negative relationship between marine calcification and CO2. The confounding effect of temperature has the potential to explain a large portion of the variability of the relationship between calcification and pCO2 reported in the literature, and warrants a re-evaluation of the projected decrease of marine calcification by the year 2100.
Resumo:
The aim of this Master Thesis is the analysis, design and development of a robust and reliable Human-Computer Interaction interface, based on visual hand-gesture recognition. The implementation of the required functions is oriented to the simulation of a classical hardware interaction device: the mouse, by recognizing a specific hand-gesture vocabulary in color video sequences. For this purpose, a prototype of a hand-gesture recognition system has been designed and implemented, which is composed of three stages: detection, tracking and recognition. This system is based on machine learning methods and pattern recognition techniques, which have been integrated together with other image processing approaches to get a high recognition accuracy and a low computational cost. Regarding pattern recongition techniques, several algorithms and strategies have been designed and implemented, which are applicable to color images and video sequences. The design of these algorithms has the purpose of extracting spatial and spatio-temporal features from static and dynamic hand gestures, in order to identify them in a robust and reliable way. Finally, a visual database containing the necessary vocabulary of gestures for interacting with the computer has been created.
Resumo:
Cellular processes are mediated by complex networks of molecular interactions. Dissection of their role most commonly is achieved by using genetic mutations that alter, for example, protein–protein interactions. Small molecules that accomplish the same result would provide a powerful complement to the genetic approach, but it generally is believed that such molecules are rare. There are several natural products, however, that illustrate the feasibility of this approach. Split-pool synthesis now provides a simple mechanical means to prepare vast numbers of complex, even natural product-like, molecules individually attached to cell-sized polymer beads. Here, we describe a genetic system compatible with split-pool synthesis that allows the detection of cell-permeable, small molecule inhibitors of protein–protein interactions in 100- to 200-nl cell culture droplets, prepared by a recently described technique that arrays large numbers of such droplets. These “nanodroplets” contain defined media, cells, and one or more beads containing ≈100 pmol of a photoreleasable small molecule and a controlled number of cells. The engineered Saccharomyces cerevisiae cells used in this study express two interacting proteins after induction with galactose whose interaction results in cell death in the presence of 5-fluoroorotic acid (inducible reverse two-hybrid assay). Disruption of the interaction by a small molecule allows growth, and the small molecule can be introduced into the system hours before induction of the toxic interaction. We demonstrate that the interaction between the activin receptor R1 and the immunophilin protein FKBP12 can be disrupted by the small molecule FK506 at nanomolar concentrations in nanodroplets. This system should provide a general method for selecting cell-permeable ligands that can be used to study the relevance of protein–protein interactions in living cells or organisms.
Resumo:
In human cells, hMLH1, hMLH3, hPMS1 and hPMS2 are four recognised and distinctive homologues of MutL, an essential component of the bacterial DNA mismatch repair (MMR) system. The hMLH1 protein forms three different heterodimers with one of the other MutL homologues. As a first step towards functional analysis of these molecules, we determined the interacting domains of each heterodimer and tried to understand their common features. Using a yeast two-hybrid assay, we show that these MutL homologues can form heterodimers by interacting with the same amino acid residues of hMLH1, residues 492–742. In contrast, three hMLH1 partners, hMLH3, hPMS1 and hPMS2 contain the 36 homologous amino acid residues that interact strongly with hMLH1. Contrary to the previous studies, these homologous residues reside at the N-terminal regions of three subdomains conserved in MutL homologues in many species. Interestingly, these residues in hPMS2 and hMLH3 may form coiled-coil structures as predicted by the MULTICOIL program. Furthermore, we show that there is competition for the interacting domain in hMLH1 among the three other MutL homologues. Therefore, the quantitative balance of these three MutL heterodimers may be important in their functions.