981 resultados para Instrumentation for fluorescence emission studies
Resumo:
The application of ultrasound to a solution can induce cavitional phenomena and generate high localised temperatures and pressures. These are dependent of the frequency used and have enabled ultrasound application in areas such as synthetic, green and food chemistry. High frequency (100 kHz to 1 MHz) in particular is promising in food chemistry as a means to inactivate enzymes, replacing the need to use periods of high temperature. A plant enzyme, horseradish peroxidase, was studied using time-resolved fluorescence techniques as a means to assess the effect of high frequency (378 kHz and 583 kHz) ultrasound treatment at equivalent acoustic powers. This uncovered the fluorescence emission from a newly formed species, attributed to the formation of di-tyrosine within the horseradish peroxidase structure caused by auto-oxidation, and linked to enzyme inactivation.
Resumo:
Poster presented at the 24th Annual Meeting of the Portuguese Dental Association, Lisbon, 12-14 November 2015.
Resumo:
In this study the role of different metal centers (magnesium, zinc and copper) on the enhancement of the hydrophilic character of metallochlorophylls, was evaluated. The solvatochromism as well as the aggregation process for these compounds in water/ethanol mixtures at different volume ratios were evaluated using Fluorescence, and Resonant Light Scattering (RLS) measurements, aiming to characterize the behavior of these compounds. Independently on the studied metallochlorophyll, the presence of at least 60% of water results in a considerable increase in the fluorescence emission, probably a direct consequence of a lower aggregation of these compounds, which is confirmed by the results from RLS measurements. Additionally, the results suggest that magnesium and zinc chlorophyll should be promising phototherapeutic agents for Photodynamic Therapy.
Resumo:
The entrapment of hematoporphyrin IX (Hp IX) in silica by means of a microemulsion resulted in silica spheres of 33 +/- 6 nm. The small size, narrow size distribution and lack of aggregation maintain Hp IX silica nanospheres stable in aqueous solutions for long periods and permit a detailed study of the entrapped drug by different techniques. Hp IX entrapped in the silica matrix is accessed by oxygen and upon irradiation generates singlet oxygen which diffuses very efficiently to the outside solution. The Hp IX entrapped in the silica matrix is also reached by iron(II) ions, which causes quenching of the porphyrin fluorescence emission. The silica matrix also provides extra protection to the photosensitizer against interaction with BSA and ascorbic acid, which are known to cause suppression of singlet oxygen generation by the Hp IX free in solution. Therefore, the incorporation of Hp IX molecules into silica nanospheres increased the potential of the photosensitizer to perform photodynamic therapy.
Resumo:
The effect of binding Tb(3+) to sodium taurocholate aggregates containing polyaromatic hydrocarbon guests was examined using pyrene and 1-ethylnaphthalene as guests that bind to the primary aggregate, and 1-naphthyl-1-ethanol as a secondary aggregate guest. Time-resolved fluorescence quenching studies were used to study the binding site properties, while laser flash photolysis quenching studies provided information on the dynamics of the guest-aggregate system. Both the primary and secondary aggregate binding sites became more compact in the presence of bound Tb(3+), while only the primary aggregate became more accessible to anionic molecules. The binding dynamics for the guest-primary aggregate system became faster when Tb(3+) was bound to the aggregate. In contrast, for the guest-secondary aggregate the presence of Tb(3+) resulted in a small decrease in the dissociation rate constant. The influence of bound Tb(3+) on the primary and secondary bile salt aggregates is significantly different, which affects how these aggregates can be used as supramolecular host systems to modify guest reactivity.
Resumo:
Bothropstoxin-I (BthTx-I) is a Lys49-PLA(2) from the venom of the snake Bothrops jararacussu, which permeabilizes biological and artificial membranes by a mechanism independent of lipid hydrolysis. This mechanism has been investigated by studying the interaction of nine single tryptophan BthTx-I mutants with negatively charged phospholipid membranes. Changes in the solvent exposure of the tryptophan in each mutant were evaluated comparing the rate of chemical modification (k(mod)) by bromosuccinamide with the maximum intrinsic tryptophan fluorescence emission wavelength (lambda(max)) in buffer and in the presence of 10% DMPA/90% DPPC liposomes. No changes in lambda(max). were observed, whereas k(mod) values for tryptophans at positions 7, 10, 31 and 125 were significantly reduced in the presence of lipids, suggesting that bound phospholipid decreases solvent accessibility at these positions. Since the half-lives of the fluorescence and chemical modification effects differ by at least six orders of magnitude, these results suggest that the bound phospholipid may interact with multiple locations on the protein surface over micro- to millisecond timescales. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The ability to generate enormous random libraries of DNA probes via split-and-mix synthesis on solid supports is an important biotechnological application of colloids that has not been fully utilized to date. To discriminate between colloid-based DNA probes each colloidal particle must be 'encoded' so it is distinguishable from all other particles. To this end, we have used novel particle synthesis strategies to produce large numbers of optically encoded particle suitable for DNA library synthesis. Multifluorescent particles with unique and reproducible optical signatures (i.e., fluorescence and light-scattering attributes) suitable for high-throughput flow cytometry have been produced. In the spectroscopic study presented here, we investigated the optical characteristics of multi-fluorescent particles that were synthesized by coating silica 'core' particles with up to six different fluorescent dye shells alternated with non-fluorescent silica 'spacer' shells. It was observed that the diameter of the particles increased by up to 20% as a result of the addition of twelve concentric shells and that there was a significant reduction in fluorescence emission intensities from inner shells as an increasing number of shells were deposited.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
Mesoamerican cultures had a strong tradition of written and pictorial manuscripts, called the codices. In studies already performed it was found the use of Maya Blue, made from a mixture of indigo and a clay called palygorskite, forming an incredibly stable material where the dye is trapped inside the nanotubes of the clay, after heating. However, a bigger challenge lies in the study of the yellows used, for these civilizations might have used this clay-dye mixture to produce their yellow colorants. As a first step, it was possible to provide identification, by non-invasive methods, of two colorants (a flavonoid and a carotenoid). While the flavonoid absorbed between 368-379 nm, the carotenoid would absorb around 455 nm. A temperature study also conducted allowed to set 140ºC as the desirable temperature to heat the samples without degrading them. FT-IR, conventional Raman and SERS allowed us to understand the existence of a reaction between the dyes and the clays (palygorskite and kaolinite), however it is difficult to understand it in a molecular point of view. As a second step, five species of Mexican dyes were selected on the basis of historical sources. The Maya yellow samples were produced adapting the recipe proposed by Reyes-Valerio, supporting the yellow dyes extracted from the dried plants on the clays, with addition of water, and then heated at 140ºC. It was found that the addition of water in palygorskite would increase the pH, hence deprotonating the molecules having a clear negative effect in the color. A second recipe was developed, without the addition of water; however, it was found that the use of water based binders would still alter the color of the samples with palygorskite. In this case, kaolinite without heating yield better results as a Maya yellow hybrid. It was found that the Maya chemistry might not have been the same for all the colors. The Mesoamericans might have found that different dyes could work better to their desires if matched with different clays. It was noticeable that for a clear distinction between flavonoids and carotenoids the reflectance and emission studies suffice, but when clay is added, Raman techniques will perform better. For this reason, conventional Raman and SERS were employed in order to create a database for the Mesoamerican dyestuffs for a future identification.
Resumo:
High-resolution structural information on optimally preserved bacterial cells can be obtained with cryo-electron microscopy of vitreous sections. With the help of this technique, the existence of a periplasmic space between the plasma membrane and the thick peptidoglycan layer of the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus was recently shown. This raises questions about the mode of polymerization of peptidoglycan. In the present study, we report the structure of the cell envelope of three gram-positive bacteria (B. subtilis, Streptococcus gordonii, and Enterococcus gallinarum). In the three cases, a previously undescribed granular layer adjacent to the plasma membrane is found in the periplasmic space. In order to better understand how nascent peptidoglycan is incorporated into the mature peptidoglycan, we investigated cellular regions known to represent the sites of cell wall production. Each of these sites possesses a specific structure. We propose a hypothetic model of peptidoglycan polymerization that accommodates these differences: peptidoglycan precursors could be exported from the cytoplasm to the periplasmic space, where they could diffuse until they would interact with the interface between the granular layer and the thick peptidoglycan layer. They could then polymerize with mature peptidoglycan. We report cytoplasmic structures at the E. gallinarum septum that could be interpreted as cytoskeletal elements driving cell division (FtsZ ring). Although immunoelectron microscopy and fluorescence microscopy studies have demonstrated the septal and cytoplasmic localization of FtsZ, direct visualization of in situ FtsZ filaments has not been obtained in any electron microscopy study of fixed and dehydrated bacteria.
Resumo:
In a mode of nude mice bearing a human colon carcinoma xenograft, the biodistribution and tumor localization of metatetrahydroxyphenylchlorin (m-THPC) coupled to polyethylene glycol (PEG) were compared with those of the free form of this photosensitizer used in photodynamic therapy (PDT). At different times after i.v. injection of both forms of 125I-labeled photosensitizer, m-THPC-PEG gave on average a 2-fold higher tumor uptake than free m-THPC. In addition, at early times after injection, m-THPC-PEG showed a 2-fold longer blood circulating half-life and a 4-fold lower liver uptake than free m-THPC. The tumor to normal tissue ratios of radioactivity concentrations were always higher for m-THPC-PEG than for free m-THPC at any time point studied from 2 to 96 hr post-injection. Significant coefficients of correlation between direct fluorescence measurements and radioactivity counting were obtained within each organ tested. Fluorescence microscopy studies showed that m-THPC-PEG was preferentially localized near the tumor vessels, whereas m-THPC was more diffusely distributed inside the tumor tissue. To verify whether m-THPC-PEG conjugate remained phototoxic in vivo, PDT experiments were performed 72 hr after injection and showed that m-THPC-PEG was as potent as free m-THPC in the induction of tumor regression provided that the irradiation does for m-THPC-PEG conjugate was adapted to a well-tolerated 2-fold higher level. The overall results demonstrate first the possibility of improving the in vivo tumor localization of a hydrophobic dye used for PDT by coupling it to PEG and second that a photosensitizer conjugated to a macromolecule can remain phototoxic in vivo.
Resumo:
PURPOSE: To analyze outcomes after right portal vein embolization extended to segment IV (right PVE + IV) before extended right hepatectomy, including liver hypertrophy, resection rates, and complications after embolization and resection, and to assess differences in outcomes with two different particulate embolic agents. MATERIALS AND METHODS: Between 1998 and 2004, transhepatic ipsilateral right PVE + IV with particles and coils was performed in 44 patients with malignant hepatobiliary disease, including metastases (n = 24), biliary cancer (n = 14), and hepatocellular carcinoma (n = 6). Right PVE + IV was considered if the future liver remnant (FLR; segments II/III with or without I) was less than 25% of the total estimated liver volume (TELV). Tris-acryl microspheres (100-700 microm; n = 21) or polyvinyl alcohol (PVA) particles (355-1,000 microm; n = 23) were administered in a stepwise fashion. Smaller particles were used to occlude distal branches, followed by larger particles to occlude proximal branches until near-complete stasis. Coils were then placed in secondary portal branches. Computed tomographic volumetry was performed before and 3-4 weeks after right PVE + IV to assess FLR hypertrophy. Liver volumes and postembolization and postoperative outcomes were measured. RESULTS: After right PVE + IV with PVA particles, FLR volume increased 45.5% +/- 40.9% and FLR/TELV ratio increased 6.9% +/- 5.6%. After right PVE + IV with tris-acryl microspheres, FLR volume increased 69.0% +/- 30.7% and FLR/TELV ratio increased 9.7% +/- 3.3%. Differences in FLR volume (P = .0011), FLR/TELV ratio (P = .027), and resection rates (P = .02) were statistically significant. Seventy-one percent of patients underwent extended right hepatectomy (86% after receiving tris-acryl microspheres, 57% after receiving PVA). Thirteen patients (29%) did not undergo resection (extrahepatic spread [n = 9], inadequate hypertrophy [n = 3], other reasons [n = 1]). No patient developed postembolization syndrome or progressive liver insufficiency after embolization or resection. One death after resection occurred as a result of sepsis and hemorrhage. Median hospital stays were 1 day after right PVE + IV and 7 days after resection. CONCLUSION: Transhepatic ipsilateral right PVE + IV with use of particles and coils is a safe, effective method for inducing contralateral hypertrophy before extended right hepatectomy. Embolization with small spherical particles provides improved hypertrophy and resection rates compared with larger, nonspherical particles.
Resumo:
The use of cages of different material and shapes for cervical discectomy with fusion (ACDF) has increased during the last few years. The use of additional osteogenic material is controversial. We prospectively evaluated an empty, Plasmapore-covered titanium cage (PCTC) in 45 patients undergoing 58 ACDFs. Patients were evaluated using standard clinical and radiological criteria. Good to excellent outcome was achieved in 93%, 78% and 75% after 3, 12 and 48 months, respectively. Sixty-five percent of patients could resume their prior work after 48 months. Disc space height and lordosis could be preserved in all cases. Two percent of the treated levels showed subsidence and 2% increased segmental motion. There were no procedure-related complications. Implantation of an empty PCTC after microsurgical anterior cervical discectomy is a safe procedure with good results and low incidence of complications. Disc height and lordosis can be preserved with low incidence of subsidence and good fusion rates.
Resumo:
The solution fluorescence of N-alkyl-2,3-naphthalimides (1-4) in polar protic and aprotic solvents was compared to the emission from solid samples resulting from the imide complexation with b-cyclodextrin or adsorption on the surface of microcrystalline cellulose. Solid samples of the inclusion complex 2,3-naphthalimides/b-cyclodextrin show maximum for fluorescence emission significantly different to the observed in methanolic solution. Beside this, a clear effect on the alkyl chain length could be observed for these samples which is probably due to differences in probe location inside the cyclodextrin cavity. The constancy for fluorescence quantum yield and fluorescence lifetime for the imides 1 - 4 adsorbed on microcrystalline cellulose suggests that, independently of the polarity of the solvent used for sample preparation, the probe is preferentially located on the cellulose surface. An increase of fluorescence quantum yield and fluorescence lifetime for solid samples, when compared to the values obtained in solution for the different solvents employed in this study (acetonitrile, methanol and water), is fully in accordance with a decrease of the probe mobility due to inclusion in b-cyclodextrin or to adsorption on cellulose.
Resumo:
UV-Vis and fluorescence spectroscopic studies of the native and reconstituted d monomers of Glossoscolex paulistus were performed in acid medium. The coexistence of distinct species shows the complexity of the equilibria. Besides the hexacoordinate low spin hemichrome, with bands at 535 and 565 nm, a pentacoordinate high spin hemichrome is identified by the blue-shifted low intensity Soret band (371 nm) and the LMCT band (643 nm). The pentacoordinate hemichrome must be related to the partial unfolding of the polypeptide.