847 resultados para Indian waters
Resumo:
Assemblages of organic-walled dinoflagellate cysts (dinocysts) from 116 marine surface samples have been analysed to assess the relationship between the spatial distribution of dinocysts and modern local environmental conditions [e.g. sea surface temperature (SST), sea surface salinity (SSS), productivity] in the eastern Indian Ocean. Results from the percentage analysis and statistical methods such as multivariate ordination analysis and end-member modelling, indicate the existence of three distinct environmental and oceanographic regions in the study area. Region 1 is located in western and eastern Indonesia and controlled by high SSTs and a low nutrient content of the surface waters. The Indonesian Throughflow (ITF) region (Region 2) is dominated by heterotrophic dinocyst species reflecting the region's high productivity. Region 3 is encompassing the area offshore north-west and west Australia which is characterised by the water masses of the Leeuwin Current, a saline and nutrient depleted southward current featuring energetic eddies.
Resumo:
Measurements of 87Sr/86Sr ratios of interstitial waters from leg 25, site 245 and leg 38, site 336 of the Deep Sea Drilling Project show that the enrichment of Sr[2+] with depth is caused both by the alteration of volcanic material and by the introduction of strontium derived from calcium carbonate. 87Sr/86 Sr ratios range from 0.70913 to 0.70794 at site 245 and from 0.70916 to 0.70694 at site 336. The low ratios compared with contemporaneous seawater reflect the release of Sr from a volcanic source having, according to material-balance calculations, a 87Sr/86 Sr ratio of about 0.7034 at site 336. At this site the source appears to be volcanic ash and not basaltic basement which acts as a sink for Sr[2+] during in situ low-temperature weathering. The volcanic contribution to the strontium enrichment in the basal interstitial waters varies from <10% at site 245 to >50% at site 336. The remaining Sr[2+] is derived from Sr-rich biogenic carbonate during diagenetic recrystallization to form Sr-poor calcite.
Resumo:
The Asian monsoon system governs seasonality and fundamental environmental characteristics in the study area from which two distinct peculiarities are most notable: upwelling and convective mixing in the Arabian Sea and low surface salinity and stratification in the Bay of Bengal due to high riverine input and monsoonal precipitation. The respective oceanography sets the framework for nutrient availability and productivity. Upwelling ensures high nitrate concentration with temporal/spatial Si limitation; freshwater-induced stratification leads to reduced nitrogen input from the subsurface but Si enrichment in surface waters. Ultimately, both environments support high abundance of diatoms, which play a central role in the export of organic matter. It is speculated that, additional to eddy pumping, nitrogen fixation is a source of N in stratified waters and contributes to the low-d15N signal in sinking particles formed under riverine impact. Organic carbon fluxes are best correlated to opal but not to carbonate, which is explained by low foraminiferal carbonate fluxes within the river-impacted systems. This observation points to the necessity of differentiating between carbonate sources for carbon flux modeling. As evident from a compilation of previously published and new data on labile organic matter composition (amino acids and carbohydrates), organic matter fluxes are mainly driven by direct input from marine production, except the site off Pakistan where sedimentary input of (marine) organic matter is dominant during the NE monsoon. The explanation of apparently different organic carbon export efficiency calls for further investigations of, for example, food web structure and water column processes.
Resumo:
A continuous 10-m-long section consisting of roughly two thirds Ethmodiscus rex (a diatom) and one third mixed planktonic foraminifera was identified in a core from 3800 m depth at 9°S on the Indian Ocean's 90°E Ridge. Radiocarbon dates place the onset of deposition of this layer at >30,000 years B.P. and its termination at close to 11,000 years B.P. However, precise dating of the foraminifera from the Ethmodiscus layer itself proved to be impossible owing to the presence of secondary calcite presumably precipitated from the pore waters. During the Holocene, high calcium carbonate content ooze free of diatoms was deposited at this locale. As the site currently lies beneath the pathway taken by upper ocean waters entering the Indian Ocean from the Pacific (via the Indonesian Straits), it appears that during glacial time, thermocline waters moving along this same path provided the silica and other nutrients required by these diatoms.
Resumo:
Interstitial water analyses from sediments collected during Leg 25 of the Deep Sea Drilling Project have revealed that in the southwest Indian Ocean, great chemical activity exists in sediments in various depositional environments. Variable sedimentation rates allow us to set some interesting boundary conditions on chemical and transport processes in these interstitial waters, particularly with regard to the distribution of dissolved sulfate. In terrigenous rapidly deposited sediments, large depletions are observed in magnesium and potassium, whereas relatively small decreases in dissolved calcium occur. In slowly deposited detrital sediments, also, large decreases in potassium and magnesium coincide with very large calcium increases. In truly pelagic sediments, a one to one replacement of magnesium by calcium is observed in the interstitial waters, presumably due to reactions in the basal sediment layers. Biogenous deposits have great influence on dissolved silica (sponge spicules and radiolarians) and on dissolved strontium (carbonate recrystallization). Otherwise, dissolved silica reflects the clay mineralogy and shows variations which seem particularly dependent on the presence or absence of kaolinite. Variable dissolved manganese values reflect reducing conditions and/or availability of manganese in the solid phases for mobilization in reducing sediments.
Resumo:
Quantitative distribution of plankton (mostly mesoplankton) is studied in the upper 200 m layer of oligotrophic waters in tropical anticyclonic gyres of the Pacific and Indian Oceans. Some general features of its trophic and taxonomic structures and vertical distribution are described.
Resumo:
We investigate the evolution of Cenozoic climate and ice volume as evidenced by the oxygen isotopic composition of seawater (delta18Osw) derived from benthic foraminiferal Mg/Ca ratios to constrain the temperature effect contained in foraminiferal delta18O values. We have constructed two benthic foraminiferal Mg/Ca records from intermediate water depth sites (Ocean Drilling Program sites 757 and 689 from the subtropical Indian Ocean and the Weddell Sea, respectively). Together with the previously published composite record of Lear et al. (2002, doi:10.1126/science.287.5451.269) and the Neogene record from the Southern Ocean of Billups and Schrag (2002, doi:10.1029/2000PA000567), we obtain three, almost complete representations of the delta18Osw for the past 52 Myr. We discuss the sensitivity of early Cenozoic Mg/Ca-derived paleotemperatures (and hence the delta18Osw) to assumptions about seawater Mg/Ca ratios. We find that during the middle Eocene (~ 49-40 Ma), modern seawater ratios yield Mg/Ca-derived temperatures that are in good agreement with the oxygen isotope paleothermometer assuming ice-free conditions. Intermediate waters cooled during the middle Eocene reaching minimum temperatures by 40 Ma. The corresponding delta18Osw reconstructions support ice growth on Antarctica beginning by at least 40 Ma. At the Eocene/Oligocene boundary, Mg/Ca ratios (and hence temperatures) from Weddell Sea site 689 display a well-defined maximum. We caution against a paleoclimatic significance of this result and put forth that the partitioning coefficient of Mg in benthic foraminifera may be sensitive to factors other than temperature. Throughout the remainder of the Cenozoic, the temporal variability among delta18Osw records is similar and similar to longer-term trends in the benthic foraminiferal delta18O record. An exception occurs during the Pliocene when delta18Osw minima in two of the three records suggest reductions in global ice volume that are not apparent in foraminiferal delta18O records, which provides a new perspective to the ongoing debate about the stability of the Antarctic ice sheet. Maximum delta18Osw values recorded during the Pleistocene at Southern Ocean site 747 agree well with values derived from the geochemistry of pore waters (Schrag et al., 1996, doi:10.1126/science.272.5270.1930) further highlighting the value of the new Mg/Ca calibrations of Martin et al. (2002, doi:10.1016/S0012-821X(02)00472-7) and Lear et al. (2002, doi:10.1016/S0016-7037(02)00941-9) applied in this study. We conclude that the application of foraminiferal Mg/Ca ratios allows a refined view of Cenozoic ice volume history despite uncertainties related to the geochemical cycling of Mg and Ca on long time scales.
Resumo:
Six Deep Sea Drilling Project (DSDP) Sites (252, 285, 315, 317, 336, 386) were examined for the chemical composition of the dissolved salts in interstitial waters, the oxygen isotopic composition of the interstitial waters, and the major ion composition of the bulk solid sediments. An examination of the concentration-depth profiles of dissolved calcium, magnesium, potassium, and H218O in conjunction with oxygen isotope mass balance calculations confirms the hypothesis that in DSDP pelagic drill sites concentration gradients in Ca. Mg. K, and H218O are largely due to alteration reactions occurring in the basalts of Layer 2 and to alteration reactions involving volcanic matter dispersed in the sediment column. Oxygen isotope mass balance calculations require substantial alteration of Layer 2 (up to 25% of the upper 1000 m). but only minor exchange of Ca, Mg, and K occurs with the overlying ocean. This implies that alteration reactions in Layer 2 are almost isochemical.
Resumo:
The biotic effects of volcanism have long been the unknown factors in creating biotic stress, and the contribution of the Deccan volcanism to the K-T mass extinction remains largely unknown. Detailed studies of the volcanic-rich sediments of Indian Ocean Ninetyeast Ridge Sites 216 and 217 and Wharton Basin Site 212 reveal that the biotic effects of late Maastrichtian volcanism on planktic foraminifera and calcareous nannofossils are locally as severe as those of the K-T mass extinction. The biotic expressions of these high stress environments are characterized by the Lilliput effect, which includes reduced diversity by eliminating most K-strategy species, and reduction in specimen size (dwarfing), frequently to less than half their normal adult size of both r-strategy and surviving K-strategy species. In planktic foraminifera, the most extreme biotic stress results are nearly monospecific assemblages dominated by the disaster opportunist Guembelitria, similar to the aftermath of the K-T mass extinction. The first stage of improving environmental conditions results in dominance of dwarfed low oxygen tolerant Heterohelix species and the presence of a few small r-strategy species (Hedbergella, Globigerinelloides). Calcareous nannofossil assemblages show similar biotic stress signals with the dominance of Micula decussata, the disaster opportunist, and size reduction in the mean length of subordinate r-strategy species particularly in Arkhangelskiella cymbiformis and Watznaueria barnesiae. These impoverished and dwarfed late Maastrichtian assemblages appear to be the direct consequences of mantle plume volcanism and associated environmental changes, including high nutrient influx leading to eutrophic and mesotrophic waters, low oxygen in the water column and decreased watermass stratification.
Resumo:
As a part of the shipboard scientific program, interstitial waters were routinely analyzed for pH, alkalinity, salinity, chlorinity, calcium, and magnesium during Leg 116. Unfortunately, the tables containing these data for Sites 718 and 719 were inadvertently omitted from the Initial Results volume (Cochran, Stow et al., 1989, doi:10.2973/odp.proc.ir.116.1989). The missing data are presented here (Tables 1-3) along with the Site 717 data, reproduced for completeness.
Resumo:
Samples for total organic carbon (TOC) analysis were collected on WOCE Line P15S (0° to 67°S along 170°W) and from 53° to 67°S along 170°E in the western South Pacific, and on Line I8 (5°N to 43°S along 80°/90°E) in the central Indian Ocean. TOC concentrations in the upper ocean varied greatly between the regions studied. Highest surface TOC concentrations (81-85 µM C and 68-73 µM C) were observed in the warmest waters (>27°C) of the western South Pacific and central Indian Oceans, respectively. Lowest surface TOC concentrations (45-65 µM C) were recorded in the southernmost waters occupied (>50°S along 170°W and 170°E). Deep water (>1000 m) TOC concentrations were uniform across all regions analyzed, averaging between 42.3 and 43 µM C (SD: ±0.9 µM C). Mixing between TOC-rich surface waters and TOC-poor deep waters was indicated by the strong correlations between TOC and temperature (r2>0.80, north of 45°S) and TOC and density (r2>0.50, southernmost regions). TOC was inversely correlated with apparent oxygen utilization (AOU) along isopycnal surfaces north of the Polar Frontal Zone (PFZ) and at depths <500 m. The TOC:AOU molar ratios at densities of sigmaT 23-27 ranged from -0.15 to -0.34 in the South Pacific and from -0.13 to -0.31 in the Indian Ocean. These ratios indicate that TOC oxidation was responsible for 21%-47% and 18%-43% of oxygen consumption in the upper South Pacific and Indian Oceans, respectively. At greater depths, TOC did not contribute to the development of AOU. There was no evidence for significant export of dissolved and suspended organic carbon along isopycnal surfaces that ventilate near the PFZ.
Resumo:
Preliminary data are presented on dissolved heavy metals in interstitial water samples collected at Site 718 of Ocean Drilling Program Leg 118. The heavy metals at this site are divided into three groups: Group I (B, K, Mn, Ni, Pb, total Si, total P, V) behaves like Mg, which decrease with depth; Group II (Ba, Cu, Sr, Ti) behaves like Ca, which increases with depth; and Group 111 (Cd, Co, Cr, Fe, Na, Mo, Zn) contains metals that are independent of depth. Mg decreases with depth from 50 mM at the seafloor to 21 mM at 900 mbsf. Mn in the sulfate reduction zone (1.0 to 2.8 ppm) is more highly concentrated than in the methane fermentation zone (0.23 to 0.50 ppm), except for Section 116-718-1H-1. A similar behavior is also observed for V and Pb. Ni, B, and K decrease non-uniformly with depth. Ca and Sr increase with depth at the same rates, indicating the dissolution of inorganic calcium carbonate by anaerobic oxidation of organic matter (Sayles, 1981, doi:10.1016/0016-7037(81)90132-0). The distribution of Ba with depth is very similar to those of Ca and Sr. Cu and Ti profiles trend to increase non-uniformly with depth. Fe is constant with depth. The sharp decrease in total silicate concentration at the seafloor probably indicates a decrease in the decomposition of siliceous biological matter (e.g., diatoms) and production of opal. The constant levels of Group 111, except for Na and Fe, may reveal equal sources of supply from surface seawater and the Himalayas over time.