932 resultados para In vivo osteogenesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Understanding the mechanical properties of tendon is an important step to guiding the process of improving athletic performance, predicting injury and treating tendinopathies. The speed of sound in a medium is governed by the bulk modulus and density for fluids and isotropic materials. However, for tendon,which is a structural composite of fluid and collagen, there is some anisotropy requiring an adjustment for Poisson’s ratio. In this paper, these relationships are explored and modelled using data collected, in vivo, on human Achilles tendon. Estimates for elastic modulus and hysteresis based on speed of sound data are then compared against published values from in vitro mechanical tests. Methods: Measurements using clinical ultrasound imaging, inverse dynamics and acoustic transmission techniques were used to determine dimensions, loading conditions and longitudinal speed of sound for the Achilles tendon during a series of isometric plantar flexion exercises against body weight. Upper and lower bounds for speed of sound versus tensile stress in the tendon were then modelled and estimates derived for elastic modulus and hysteresis. Results: Axial speed of sound varied between 1850 to 2090 m.s−1 with a non-linear, asymptotic dependency on the level of tensile stress in the tendon 5–35 MPa. Estimates derived for the elastic modulus ranged between 1–2 GPa. Hysteresis derived from models of the stress-strain relationship, ranged from 3–11%. These values agree closely with those previously reported from direct measurements obtained via in vitro mechanical tensile tests on major weight bearing tendons. Discussion: There is sufficiently good agreement between these indirect (speed of sound derived) and direct (mechanical tensile test derived) measures of tendon mechanical properties to validate the use of this non-invasive acoustic transmission technique. This non-invasive method is suitable for monitoring changes in tendon properties as predictors of athletic performance, injury or therapeutic progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axial acoustic wave propagation has been widely used in evaluating the mechanical properties of human bone in vivo. However, application of this technique to monitor soft tissues, such as tendon, has received comparatively little scientific attention. Laboratory-based research has established that axial acoustic wave transmission is not only related to the physical properties of equine tendon but is also proportional to tensile load to which it is exposed (Miles et al., 1996; Pourcelot et al., 2005). The reproducibility of the technique for in vivo measurements in human tendon, however, has not been established. The aim of this study was to evaluate the limits of agreement for repeated measures of the speed of sound (SoS) in human Achilles tendon in vivo. Methods: A custom built ultrasound device, consisting of an A-mode 1MHz emitter and two regularly spaced receivers, was used to measure the SoS in the mid-portion of the Achilles tendon in ten healthy males and ten females (mean age: 33.8 years, range 23-56 yrs; height: 1.73±0.08 m; weight: 68.4±15.3 kg). The emitter and receivers were held at fixed positions by a polyethylene frame and maintained in close contact with the skin overlying the tendon by means of elasticated straps. Repeated SoS measurements were taken with the subject prone (non-weightbearing and relaxed Achilles tendon) and during quiet bipedal and unipedal stance. In each instance, the device was detached and repositioned prior to measurement. Results: Limits of agreement for repeated SoS measures during non-weightbearing and bipedal and unipedal stance were ±53, ±28 and ±21 m/s, respectively. The average SoS in the non-weightbearing Achilles tendon was 1804±198 m/s. There was a significant increase in the average SoS during bilateral (2122±135 m/s) (P < 0.05) and unilateral (2221±79 m/s) stance (P < 0.05). Conclusions: Repeated SoS measures in human Achilles tendon were more reliable during stance than under non-weightbearing conditions. These findings are consistent with previous research in equine tendon in which lower variability in SoS was observed with increasing tensile load (Crevier-Denoix et al, 2009). Since the limits of agreement for Achilles tendon SoS are nearly 5% of the changes previously observed during walking and therapeutic heel raise exercises, acoustic wave transmission provides a promising new non-invasive method for determining tendon properties during sports and rehabilitation related activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted a clinical trial to compare the molecular and cellular responses of human melanocytes and keratinocytes in vivo to solar-simulated ultraviolet radiation (SSUVR) in 57 Caucasian participants grouped according to MC1R genotype. We found that, on average, the density of epidermal melanocytes 14 days after exposure to 2 minimal erythemal dose (MED) SSUVR was twofold higher than baseline (unirradiated) skin. However, the change in epidermal melanocyte counts among people carrying germline MC1R variants (97% increase) was significantly less than those with wild-type MC1R (164% increase; P = 0.01). We also found that sunscreen applied to the skin before exposure to 2 MED SSUVR completely blocked the effects of DNA damage, p53 induction, and cellular proliferation in both melanocytes and keratinocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated Nrf2-activating properties of a coffee blend combining raw coffee bean constituents with 5-O-caffeoylquinic acid (CGA) as a lead component with typical roasting products such as N-methylpyridinium (NMP). In cell culture (HT29) the respective coffee extract (CN-CE) increased nuclear Nrf2 translocation and enhanced the transcription of ARE-dependent genes as exemplified for NAD(P)H:quinone oxidoreductase and glutathione-S-transferase (GST)A1, reflected in the protein level by an increase in GST enzyme activity. In a pilot human intervention study (29 healthy volunteers), daily consumption of 750 mL of CN-coffee for 4 weeks increased Nrf2 transcription in peripheral blood lymphocytes on average. However, the transcriptional response pattern of Nrf2/ARE-dependent genes showed substantial interindividual variations. The presence of SNPs in the Nrf2-promoter, reported recently, as well as the detection of GSTT1*0 (null) genotypes in the study collective strengthens the hypothesis that coffee acts as a modulator of Nrf2-dependent gene response in humans, but genetic polymorphisms play an important role in the individual response pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. Methods We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. Results In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. Conclusion We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in vivo. Induction of MMP gene expression in both the epithelial tumour cells and surrounding stromal cells is associated with increased metastatic potential. Our data demonstrate the contribution of the stroma to epithelial MMP gene expression, and highlight the complexity of the role of MMPs in the stromal-epithelial interactions within breast carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the impact of polystyrene sodium sulfonate (PolyNaSS) grafting onto the osseo-integration of a polyethylene terephthalate artificial ligament (Ligament Advanced Reinforcement System, LARS™) used for Anterior Cruciate Ligament (ACL). The performance of grafted and non-grafted ligaments was assessed in vitro by culturing human osteoblasts under osteogenic induction and this demonstrated that the surface modification was capable of up-regulating the secretion of ALP and induced higher level of mineralisation as measured 6 weeks post-seeding by Micro-Computed Tomography. Grafted and non-grafted LARS™ were subsequently implanted in an ovine model for ACL reconstruction and the ligament-to-bone interface was evaluated by histology and biomechanical testings 3 and 12 months post-implantation. The grafted ligaments exhibited more frequent direct ligament-to-bone contact and bone formation in the core of the ligament at the later time point than the non-grafted specimens, the grafting also significantly reduced the fibrous encapsulation of the ligament 12 months post-implantation. However, this improved osseo-integration was not translated into a significant increase in the biomechanical pull-out loads. These results provide evidences that PolyNaSS grafting improved the osseo-integration of the artificial ligament within the bone tunnels. This might positively influence the outcome of the surgical reconstructions, as higher ligament stability is believed to limit micro-movement and therefore permits earlier and enhanced healing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have designed a composite scaffold for potential use in tendon or ligament tissue engineering. The composite scaffold was made of a cellularized alginate gel that encapsulated a knitted structure. Our hypothesis was that the alginate would act as a cell carrier and deliver cells to the injury site while the knitted structure would provide mechanical strength to the composite construct. The mechanical behaviour and the degradation profile of the poly(lactic-co-glycolic acid) knitted scaffolds were evaluated. We found that our scaffolds had an elastic modulus of 750 MPa and that they lost their physical integrity within 7 weeks of in vitro incubation. Autologous rabbit mesenchymal stem cell seeded composite scaffolds were implanted in a 1-cm-long defect created in the rabbit tendon, and the biomechanical properties and the morphology of the regenerated tissues were evaluated after 13 weeks. The regenerated tendons presented higher normalized elastic modulus of (60%) when compared with naturally healed tendons (40%). The histological study showed a higher cell density and vascularization in the regenerated tendons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo small molecules as necessary intermediates are involved in numerous critical metabolic pathways and biological processes associated with many essential biological functions and events. There is growing evidence that MS-based metabolomics is emerging as a powerful tool to facilitate the discovery of functional small molecules that can better our understanding of development, infection, nutrition, disease, toxicity, drug therapeutics, gene modifications and host-pathogen interaction from metabolic perspectives. However, further progress must still be made in MS-based metabolomics because of the shortcomings in the current technologies and knowledge. This technique-driven review aims to explore the discovery of in vivo functional small molecules facilitated by MS-based metabolomics and to highlight the analytic capabilities and promising applications of this discovery strategy. Moreover, the biological significance of the discovery of in vivo functional small molecules with different biological contexts is also interrogated at a metabolic perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful anatomic fitting of a total artificial heart (TAH) is vital to achieve optimal pump hemodynamics after device implantation. Although many anatomic fitting studies have been completed in humans prior to clinical trials, few reports exist that detail the experience in animals for in vivo device evaluation. Optimal hemodynamics are crucial throughout the in vivo phase to direct design iterations and ultimately validate device performance prior to pivotal human trials. In vivo evaluation in a sheep model allows a realistically sized representation of a smaller patient, for which smaller third-generation TAHs have the potential to treat. Our study aimed to assess the anatomic fit of a single device rotary TAH in sheep prior to animal trials and to use the data to develop a threedimensional, computer-aided design (CAD)-operated anatomic fitting tool for future TAH development. Following excision of the native ventricles above the atrio-ventricular groove, a prototype TAH was inserted within the chest cavity of six sheep (28–40 kg).Adjustable rods representing inlet and outlet conduits were oriented toward the center of each atrial chamber and the great vessels, with conduit lengths and angles recorded for future analysis. A threedimensional, CAD-operated anatomic fitting tool was then developed, based on the results of this study, and used to determine the inflow and outflow conduit orientation of the TAH. The mean diameters of the sheep left atrium, right atrium, aorta, and pulmonary artery were 39, 33, 12, and 11 mm, respectively. The center-to-center distance and outer-edge-to-outer-edge distance between the atria, found to be 39 ± 9 mm and 72 ± 17 mm in this study, were identified as the most critical geometries for successful TAH connection. This geometric constraint restricts the maximum separation allowable between left and right inlet ports of a TAH to ensure successful alignment within the available atrial circumference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project’s aim was to create new experimental models in small animals for the investigation of infections related to bone fracture fixation implants. Animal models are essential in orthopaedic trauma research and this study evaluated new implants and surgical techniques designed to improve standardisation in these experiments, and ultimately to minimise the number of animals needed in future work. This study developed and assessed procedures using plates and inter-locked nails to stabilise fractures in rabbit thigh bones. Fracture healing was examined with mechanical testing and histology. The results of this work contribute to improvements in future small animal infection experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that in zebrafish, the microRNA miR-451 plays a crucial role in promoting erythroid maturation, in part via its target transcript gata2. Zebrafish miR-144 and miR-451 are processed from a single precursor transcript selectively expressed in erythrocytes. In contrast to other hematopoietic mutants, the ze-brafish mutant meunier (mnr) showed intact erythroid specification but diminished miR-144/451 expression. Although erythropoiesis initiated normally in mnr, erythrocyte maturation was morphologically retarded. Morpholino knockdown of miR-451 increased erythrocyte immaturity in wild-type embryos, and miR-451 RNA duplexes partially rescued erythroid maturation in mnr, demonstrating a requirement and role for miR-451 in erythro-cyte maturation. mnr provided a selectively miR-144/451-deficient background, facilitating studies to discern miRNA function and validate candidate targets. Among computer-predicted miR-451 targets potentially mediating these biologic effects, the pro-stem cell transcription factor gata2 was an attractive candidate. In vivo reporter assays validated the predicted miR-451/gata2-3'UTR interaction, gata2 down-regulation was delayed in miR-451-knockdown and mnr embryos, and gata2 knockdown partially restored erythroid maturation in mnr, collectively confirming gata2down-regulation as pivotal for miR-451-driven erythroid maturation. These studies define a new genetic pathway promoting erythroid maturation (mnr/miR-451/gata2) and provide a rare example of partial rescue of a mutant phenotype solely by miRNA overexpression. © 2009 by The American Society of Hematology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To investigate the utility of using non-contact laser-scanning confocal microscopy (NC-LSCM), compared with the more conventional contact laser-scanning confocal microscopy (C-LSCM), for examining corneal substructures in vivo. METHODS An attempt was made to capture representative images from the tear film and all layers of the cornea of a healthy, 35 year old female, using both NC-LSCM and C-LSCM, on separate days. RESULTS Using NC-LSCM, good quality images were obtained of the tear film, stroma, and a section of endothelium, but the corneal depth of the images of these various substructures could not be ascertained. Using C-LSCM, good quality, full-field images were obtained of the epithelium, subbasal nerve plexus, stroma, and endothelium, and the corneal depth of each of the captured images could be ascertained. CONCLUSIONS NC-LSCM may find general use for clinical examination of the tear film, stroma and endothelium, with the caveat that the depth of stromal images cannot be determined when using this technique. This technique also facilitates image capture of oblique sections of multiple corneal layers. The inability to clearly and consistently image thin corneal substructures - such as the tear film, subbasal nerve plexus and endothelium - is a key limitation of NC-LSCM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone metastases are severely debilitating and have a significant impact on the quality of life of women with metastatic breast cancer. Treatment options are limited and in order to develop more targeted therapies, improved understanding of the complex mechanisms that lead to bone lesion development are warranted. Interestingly, whilst prostate-derived bone metastases are characterised by mixed or osteoblastic lesions, breast-derived bone metastases are characterised by osteolytic lesions, suggesting unique regulatory patterns. This study aimed to measure the changes in bone formation and bone resorption activity at two time-points (18 and 36 days) during development of the bone lesion following intratibial injection of MDA-MB-231 human breast cancer cells into the left tibiae of Severely Combined Immuno-Deficient (SCID) mice. The contralateral tibia was used as a control. Tibiae were extracted and processed for undecalcified histomorphometric analysis. We provide evidence that the early bone loss observed following exposure to MDA-MB-231 cells was due to a significant reduction in mineral apposition rate, rather than increased levels of bone resorption. This suggests that osteoblast activity was impaired in the presence of breast cancer cells, contrary to previous reports of osteoclast-dependent bone loss. Furthermore mRNA expression of Dickkopf Homolog 1 (DKK-1) and Noggin were confirmed in the MDA-MB-231 cell line, both of which antagonise osteoblast regulatory pathways. The observed bone loss following injection of cancer cells was due to an overall thinning of the trabecular bone struts rather than perforation of the bone tissue matrix (as measured by trabecular width and trabecular separation, respectively), suggesting an opportunity to reverse the cancer-induced bone changes. These novel insights into the mechanisms through which osteolytic bone lesions develop may be important in the development of new treatment strategies for metastatic breast cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caveolae and their proteins, the caveolins, transport macromolecules; compartmentalize signalling molecules; and are involved in various repair processes. There is little information regarding their role in the pathogenesis of significant renal syndromes such as acute renal failure (ARF). In this study, an in vivo rat model of 30 min bilateral renal ischaemia followed by reperfusion times from 4 h to 1 week was used to map the temporal and spatial association between caveolin-1 and tubular epithelial damage (desquamation, apoptosis, necrosis). An in vitro model of ischaemic ARF was also studied, where cultured renal tubular epithelial cells or arterial endothelial cells were subjected to injury initiators modelled on ischaemia-reperfusion (hypoxia, serum deprivation, free radical damage or hypoxia-hyperoxia). Expression of caveolin proteins was investigated using immunohistochemistry, immunoelectron microscopy, and immunoblots of whole cell, membrane or cytosol protein extracts. In vivo, healthy kidney had abundant caveolin-1 in vascular endothelial cells and also some expression in membrane surfaces of distal tubular epithelium. In the kidneys of ARF animals, punctate cytoplasmic localization of caveolin-1 was identified, with high intensity expression in injured proximal tubules that were losing basement membrane adhesion or were apoptotic, 24 h to 4 days after ischaemia-reperfusion. Western immunoblots indicated a marked increase in caveolin-1 expression in the cortex where some proximal tubular injury was located. In vitro, the main treatment-induced change in both cell types was translocation of caveolin-1 from the original plasma membrane site into membrane-associated sites in the cytoplasm. Overall, expression levels did not alter for whole cell extracts and the protein remained membrane-bound, as indicated by cell fractionation analyses. Caveolin-1 was also found to localize intensely within apoptotic cells. The results are indicative of a role for caveolin-1 in ARF-induced renal injury. Whether it functions for cell repair or death remains to be elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD151, a member of the tetraspanin family, is associated with regulation of migration of normal and tumour cells via cell surface microdomain formation. CD151 was found in our laboratory to have a prognostic value in prostate cancer and is a promoter of prostate cancer migration and invasion. These roles involve association with integrins on both cell-cell and cell-stroma levels. Furthermore, CD151 plays a role in endothelial cell motility. CD151 expression was examined in three commonly used prostate cancer cell lines. We investigated CD151 expression, angiogenesis (microvessel density; MVD) and lymphangiogenesis (lymphatic vessel density; LVD) in an orthotopic xenograft model of prostate cancer in matched tumours from primary and secondary sites. CD151 was found to be heterogeneously expressed across different prostate cancer cell lines and the levels of CD151 expression were significantly higher in the highly tumorigenic, androgen-insensitive cells PC-3 and DU-145 compared to the androgen-sensitive cell line LNCaP (P<0.05). The majority of in vivo xenografts developed pelvic lymph node metastases. Importantly, primary tumours that developed metastasis had significantly higher CD151 expression and MVD compared to those which did not develop metastasis (P<0.05). We identified, for the first time, that CD151 expression is associated with LVD in prostate cancer. These findings underscore the potential role of CD151 and angiogenesis in the metastatic potential of prostate cancer. CD151 has a prognostic value in this mouse model of prostate cancer and may play a role in lymphangiogenesis. CD151 is likely an important regulator of cancer cell communication with the surrounding microenvironment.