750 resultados para Illinois Heart Disease and Stroke Prevention Program.
Resumo:
AIM: Cardiovascular disease (CVD), particularly coronary heart disease and stroke, are the leading cause of morbidity and mortality worldwide. The common forms of CVD have a complex etiology in which interactions between multiple genetic and environmental factors play an important role. Dyslipidaemia is one of many independent cardiovascular risk factors that have been identified for CVD, and its correct identification is of great importance in order to implement specific interventions, especially for CVD prevention. The aim of this study was the construction of population specific lipid percentiles and the to present the characterization of the dyslipidaemia in the Portuguese population.
Resumo:
This study examines the invention, innovation, introduction and use of a new drug therapy for coronary heart disease and hypertension; beta-blockade. The relationships between drug introductions and changes in medical perceptions of disease are analysed, and the development and effects of our perception of heart disease through drug treatments and diagnostic technology is described. The first section looks at the evolution of hypertension from its origin as a kidney disorder, Bright's disease, to the introduction and use of effective drugs for its treatment. It is shown that this has been greatly influenced by the introduction of new medical technologies. A medical controversy over its nature is shown both to be strongly influenced by the use of new drugs, and to influence their subsequent use. The second section reviews the literature analysing drug innovation, and examines the innovation of the beta-blocking drugs, making extensive use of participant accounts. The way in which the development of receptor theory, the theoretical basis of the innovation,was influenced by the innovation and use of drugs is discussed, then the innovation at ICI, the introduction into clinical use, and the production of similar drugs by other manufacturers are described. A study of the effects of these drugs is then undertaken, concentrating on therapeutic costs and benefits, and changes in medical perceptions of disease. The third section analyses the effects of other drugs on heart disease, looking at changes in mortality statistics and in medical opinions. The study concludes that linking work on drug innovation with that on drug effects is fruitful, that new drugs and diagnostic technology have greatly influenced medical perceptions of the nature and extent of heart disease, and that in hypertension, the improvement in drug treatment will soon result in much of the population being defined as in need of it life-long.
Resumo:
Cardiovascular diseases (CVDs) including, hypertension, coronary heart disease and heart failure are the leading cause of death worldwide. Hypertension, a chronic increase in blood pressure above 140/90 mmHg, is the single main contributor to deaths due to heart disease and stroke. In the heart, hypertension results in adaptive cardiac remodelling, including LV hypertrophy to normalize wall stress and maintain cardiac contractile function. However, chronic increases in BP results in the development of hypertensive heart disease (HHD). HHD describes the maladaptive changes during cardiac remodelling which result in reduced systolic and diastolic function and eventually heart failure. This includes ventricular dilation due to eccentric hypertrophy, cardiac fibrosis which stiffens the ventricular wall and microvascular rarefaction resulting in a decrease in coronary blood flow albeit an increase in energy demand. Chronic activation of the renin-angiotensin-system (RAS) with its effector peptide angiotensin (Ang)II plays a key role in the development of hypertension and the maladaptive changes in HHD. Ang II acts via the angiotensin type 1 receptor (AT1R) to mediate most of its pathological actions during HHD, including stimulation of cardiomyocyte hypertrophy, activation of cardiac fibroblasts and increased collagen deposition. The counter-regulatory axis of the RAS which is centred on the ACE2/Ang-(1-7)/Mas axis has been demonstrated to counteract the pathological actions of Ang II in the heart and vasculature. Ang-(1-7) via the Mas receptor prevents Ang II-induced cardiac hypertrophy and fibrosis and improves cardiac contractile function in animal models of HHD. In contrast, less is known about Ang-(1-9) although evidence has demonstrated that Ang-(1-9) also antagonises Ang II and is anti-hypertrophic and anti-fibrotic in animal models of acute cardiac remodelling. However, so far it is not well documented whether Ang-(1-9) can reverse established cardiac dysfunction and remodelling and whether it is beneficial when administered chronically. Therefore, the main aim of this thesis was to assess the effects of chronic Ang-(1-9) administration on cardiac structure and function in a model of Ang II-induced cardiac remodelling. Furthermore, this thesis aimed to investigate novel pathways contributing to the pathological remodelling in response to Ang II. First, a mouse model of chronic Ang II infusion was established and characterised by comparing the structural and functional effects of the infusion of a low and high dose of Ang II after 6 weeks. Echocardiographic measurements demonstrated that low dose Ang II infusion resulted in a gradual decline in cardiac function while a high dose of Ang II induced acute cardiac contractile dysfunction. Both doses equally induced the development of cardiac hypertrophy and cardiac fibrosis characterised by an increase in the deposition of collagen I and collagen III. Moreover, increases in gene expression of fibrotic and hypertrophic markers could be detected following high dose Ang II infusion over 6 weeks. Following this characterisation, the high dose infusion model was used to assess the effects of Ang-(1-9) on cardiac structural and functional remodelling in established disease. Initially, it was evaluated whether Ang-(1-9) can reverse Ang II-induced cardiac disease by administering Ang-(1-9) for 2-4 weeks following an initial 2 week infusion of a high dose of Ang II to induce cardiac contractile dysfunction. The infusion of Ang-(1-9) for 2 weeks was associated with a significant improvement of LV fractional shortening compared to Ang II infusion. However, after 4 weeks fractional shortening declined to Ang II levels. Despite the transient improvement in cardiac contractile function, Ang-(1-9) did not modulate blood pressure, LV hypertrophy or cardiac fibrosis. To further investigate the direct cardiac effects of Ang-(1-9), cardiac contractile performance in response to Ang-(1-9) was evaluated in the isolated Langendorff-perfused rat heart. Perfusion of Ang-(1-9) in the paced and spontaneously beating rat heart mediated a positive inotropic effect characterised by an increase in LV developed pressure, cardiac contractility and relaxation. This was in contrast to Ang II and Ang-(1-7). Furthermore, the positive inotropic effect to Ang-(1-9) was blocked by the AT1R antagonist losartan and the protein kinase A inhibitor H89. Next, endothelial-to-mesenchymal transition (EndMT) as a novel pathway that may contribute to Ang II-induced cardiac remodelling was assessed in Ang II-infused mice in vivo and in human coronary artery endothelial cells (HCAEC) in vitro. Infusion of Ang II to mice for 2-6 weeks resulted in a significant decrease in myocardial capillary density and this was associated with the occurrence of dual labelling of endothelial cells for endothelial and mesenchymal markers. In vitro stimulation of HCAEC with TGFβ and Ang II revealed that Ang II exacerbated TGF-induced gene expression of mesenchymal markers. This was not correlated with any changes in SMAD2 or ERK1/2 phosphorylation with co-stimulation of TGFβ and Ang II. However, superoxide production was significantly increased in HCAEC stimulated with Ang II but not TGFβ. Finally, the role of Ang II in microvesicle (MV)-mediated cardiomyocyte hypertrophy was investigated. MVs purified from neonatal rat cardiac fibroblasts were found to contain detectable Ang II and this was increased by stimulation of fibroblasts with Ang II. Treatment of cardiomyocytes with MVs derived from Ang II-stimulated fibroblasts induced cardiomyocyte hypertrophy which could be blocked by the AT1R antagonist losartan and an inhibitor of MV synthesis and release brefeldin A. Furthermore, Ang II was found to be present in MVs isolated from serum and plasma of Ang II-infused mice and SHRSP and WKY rats. Overall, the findings of this thesis demonstrate for the first time that the actions of Ang-(1-9) in cardiac pathology are dependent on its time of administration and that Ang-(1-9) can reverse Ang II-induced cardiac contractile dysfunction by acting as a positive inotrope. Furthermore, this thesis demonstrates evidence for an involvement of EndMT and MV signalling as novel pathways contributing to Ang II-induced cardiac fibrosis and hypertrophy, respectively. These findings provide incentive to further investigate the therapeutic potential of Ang-(1-9) in the treatment of cardiac contractile dysfunction in heart disease, establish the importance of novel pathways in Ang II-mediated cardiac remodelling and evaluate the significance of the presence of Ang II in plasma-derived MVs.
Resumo:
A periodontite é uma doença infecciosa, crônica e altamente prevalente causando uma resposta inflamatória. A infecção e a inflamação são consideradas a base etiológica para o desenvolvimento da aterosclerose. Recentes estudos indicam que a periodontite severa pode influenciar o aumento de marcadores inflamatórios e de disfunção endotelial associados com o aumento de risco da doença coronariana e o acidente vascular cerebral. Embora alguns estudos tenham sugerido esta associação, os reais efeitos do tratamento da doença periodontal sobre a rede complexa de marcadores envolvidos na aterosclerose são pouco conhecidos. O objetivo deste estudo foi avaliar o efeito da terapia periodontal nos biomarcadores inflamatórios (TNF-α, fibrinogênio, PCRus, INFγ, IL-1β, IL-6 e IL-10), perfil lipídico (CT, HDL, LDL, TG, oxLDL e anti-oxLDL) e função endotelial (IMT) das artérias carótidas. Um total de trinta e dois indivíduos saudáveis sistemicamente e afetados pela periodontite severa (16 mulheres, 16 homens; 51,87 anos de idade), incluindo 17 sujeitos para o grupo teste e 15 sujeitos para o grupo controle foram recrutados para o estudo. A ultrassonografia das artérias carótidas e os níveis séricos inflamatórios foram avaliados no início, 40 e 100 dias após o tratamento periodontal não-cirúrgico, comparando tempo e grupos. O tratamento periodontal resultou em significante redução dos parâmetros da doença periodontal. O grupo que recebeu tratamento mostrou decréscimos significativos de oxLDL (P<0.0001), anti-oxLDL (P<0,0001), TNF-α (P<0,0001), fibrinogênio (P=0,008), INFγ (P<0,0001), IL-1β (P<0,0001), IL-6 (P<0,0001), IMT (P=0,006) e significante aumento de IL-10 (P<0,0001) após 100 dias do tratamento periodontal comparando com grupo controle. Entretanto, os resultados não foram significativos para PCRu (P=0,109), colesterol total (P=0,438), HDL (P=0,119), LDL (P=0,425) e triglicerídeos (P=0,939). Com base nestes resultados, o tratamento da periodontite pode melhorar o perfil inflamatório e a função endotelial, sendo uma importante ferramenta adicional para a prevenção das doenças cardiovasculares.
Resumo:
Multiple lines of evidence suggest that elevated plasma lipoprotein(a) (Lp(a)) concentrations are a significant risk factor for the development of a number of vascular diseases including coronary heart disease and stroke. Lp(a) consists of a low-density lipoprotein (LDL)-like moiety and an unique glycoprotein, apolipoprotein(a) (apo(a)), that is covalently attached to the apolipoproteinB-100 (apoB-100) component of LDL by a single disulfide bond. Many studies have suggested a role for Lp(a) in the process of endothelial dysfunction. Indeed, Lp(a) has been shown to increase both the expression of adhesion molecules on endothelial cells (EC), as well as monocyte and leukocyte chemotactic activity in these cells. We have previously demonstrated that Lp(a), through its apo(a) moiety, increases actomyosin-driven EC contraction which, as a consequence, increases EC permeability. In this thesis, we have demonstrated a role for the strong lysine-binding site in the kringle IV type 10 domain of apo(a) in increasing EC permeability, which occurs through a Rho/Rho kinase-dependent pathway. We have further validated these findings using mouse mesenteric arteries in a pressure myograph system. We also have dissected another major signaling pathway initiated by apo(a) that involves in a disruption of adherens junctions in EC. In this pathway, apo(a)/Lp(a) activates the PI3K/Akt/GSK3β-dependent pathway to facilitate nuclear translocation of beta-catenin. In the nucleus beta-catenin induced the expression of cyclooxygenase-2 (COX-2) and the secretion of prostaglandin E2 (PGE2) from the EC. Finally, we have presented data to suggest a novel inflammatory role for apo(a) in which it induces the activation of nuclear factor-kappaB through promotion of the dissociation of IkappaB from the inactive cytoplasmic complex; this allows the nuclear translocation of NFkappaB with attendant effects on the transcription of pro-inflammatory genes. Taken together, our findings may facilitate the development of new drug targets for mitigating the harmful effects of Lp(a) on vascular EC which corresponds to an early step in the process of atherogenesis.
Resumo:
Elevated plasma concentrations of lipoprotein(a) [Lp(a)] have been identified as an independent risk factor for vascular diseases including coronary heart disease and stroke. In the current study, we have examined the binding and degradation of recombinant forms of apolipoprotein(a) [r-apo(a)], the unique kringle-containing moiety of Lp(a), using a cultured cell model. We found that the incubation of human hepatoma (HepG2) cells with an iodinated 17 kringle-containing (17K) recombinant form of apo(a) resulted in a two-component binding system characterized by a high affinity (Kd = 12 nM), low capacity binding site, and a low affinity (Kd = 249 nM), high capacity binding site. We subsequently determined that the high affinity binding site on HepG2 cells corresponds to the LDL receptor. In the HepG2 cell model, association of apo(a) with the LDL receptor was shown to be dependent on the formation of Lp(a) particles from endogenous LDL. Using an apo(a) mutant incapable of binding to the high affinity site through its inability to form Lp(a) particles (17KΔLBS7,8), we further demonstrated that the LDL receptor does not participate in Lp(a) catabolism. The low affinity binding component observed on HepG2 cells, familial hypercholesterolemia (FH) fibroblasts and human embryonic kidney (HEK) 293 cells may correspond to a member(s) of the plasminogen receptor family, as binding to this site(s) was decreased by the addition of the lysine analogue epsilon-aminocaproic acid. The lysine-dependent nature of the low affinity binding site was further confirmed in HepG2 binding studies utilizing r-apo(a) species with impaired lysine binding ability. We observed a reduction maximum binding capacity for 17K r-apo(a) variants lacking the strong lysine binding site (LBS) in kringle IV type 10 (17KΔAsp) and the very weak LBS in kringle V (17KΔV). Degradation of Lp(a)/apo(a) was found to be mediated exclusively by the low affinity component on both HepG2 cells and FH fibroblasts. Fluorescence confocal microscopy, using the 17K r-apo(a) variant fused to green fluorescent protein, further confirmed that degradation by the low affinity component on HepG2 cells does not proceed by the activity of cellular lysosomes. Taken together, these data suggest a potentially significant route for Lp(a)/apo(a) clearance in vivo.
Resumo:
Vitamin E in the reduced, alpha-tocopherol form shows very modest anticlotting activity. By contrast, vitamin E quinone is a potent anticoagulant. This observation may have significance for field trials in which vitamin E is observed to exhibit beneficial effects on ischemic heart disease and stroke. Vitamin E quinone is a potent inhibitor of the vitamin K-dependent carboxylase that controls blood clotting. A newly discovered mechanism for the inhibition requires attachment of the active site thiol groups of the carboxylase to one or more methyl groups on vitamin E quinone. The results from a series of model reactions support this interpretation of the anticlotting activity associated with vitamin E.
Resumo:
These bookmarks state: African-Americans are less likely to exercise than Caucasians. In S.C., 1 in 3 African-Americans has high blood pressure and 1 in 3 has high cholesterol. This causes an increase in death rates from heart disease and stroke. Regular physical activity can help to: prevent heart disease and prevent high blood pressure.
Resumo:
Objetivo: Establecer la relación entre la exposición ocupacional a altas temperaturas o sobrecarga térmica con el comportamiento fisiológico, metabólico y electrocardiográfico. Métodos: estudio de corte transversal, donde se incluyeron dos grupos (expuesto y no expuesto a altas temperaturas) en una empresa minera, en el departamento de Boyacá, Colombia, en el año 2016. El número de participantes fue de 160 trabajadores del género masculino, grupo expuesto (n=86) y grupo no expuesto (n=74). La exposición ocupacional a sobrecarga térmica se evaluó con el índice de temperatura de globo y bulbo húmedo (TGBH), el comportamiento fisiológico con el índice de costo cardiaco relativo (ICCR) con mediciones de frecuencia cardiaca (FC), el comportamiento metabólico con la determinación del colesterol total (CT), colesterol de alta densidad (C-HDL), colesterol de baja densidad (C-LDL), triglicéridos (TG) y glicemia basal (GL). Las alteraciones electrocardiográficas con la toma de Electrocardiograma de 12 derivaciones. También fueron evaluadas variables antropométricas, tensión arterial, hábitos y antecedentes de enfermedad cardiovascular en ambos grupos. Resultados: incrementos significativos del ICCR (p<0.001) y la carga física (p<0.001) fueron encontrados en los trabajadores expuestos a altas temperaturas. Los índices lipídicos y glicemia, así como los antecedentes personales cardiovasculares, IMC, consumo de cigarrillo y consumo de alcohol, no mostraron significancia. El antecedente familiar de ACV (p=0.043) y el EKG alterado (p=0.011) mostraron una asociación significativa con la exposición a altas temperaturas. El modelo de regresión lineal múltiple explicó la relación entre el incremento del ICCR y la exposición a altas temperaturas (β=4,213, IC 95%: 1.57,6.85) ajustado por variables fisiológicas y electrocardiográficas. Conclusiones: La exposición ocupacional a altas temperaturas, presenta asociación con las alteraciones cardiovasculares a nivel fisiológico y electrocardiográfico, aumentando el ICCR y la carga física de trabajo (GE trabajo).
Resumo:
This study was carried out to compare the fasting plasma glucose (FPG) and 2-h plasma glucose (2-h PG) criteria for diabetes with regard to their relation to stroke mortality and the incidence of ischemic and hemorrhagic stroke. In addition, the age-and gender difference in the incidence of coronary heart disease (CHD) and stroke and their relation with known cardiovascular disease risk factors and diabetes mellitus was examined. The study was a sub-data analysis of the Diabetes Epidemiology: Collaborative analysis Of Diagnostic criteria in Europe (DECODE) study including 25 181 individuals, 11 844 (47%) men and 13 345 (53%) women aged 25 to 90 years, from 14 European cohorts. In individuals without a history of diabetes elevated 2-h post-challenge glucose was a better predictor of stroke mortality than elevated fasting glucose in men, whereas the latter was better than the former in women. Elevated FPG and 2-h PG levels were associated with an increased risk of ischemic stroke incidence. 2-h PG contributed to the risk more strongly than FPG. No relationship between hyperglycemia and the risk of hemorrhagic stroke was found. The risk of CHD and ischemic stroke incidence increased with age in both genders, but was higher in all age groups in men than in women. The gender difference was, however, more marked for CHD than for ischemic stroke. Age, smoking and diabetes contributed to the development of both CHD and ischemic stroke. Elevated cholesterol levels predicted CHD only, whereas elevated blood pressure was a risk predictor for the incidence of ischemic stroke. The CHD and ischemic stroke risk was higher in men than in women with and without diabetes, however, the gender difference diminished for CHD but enlarged for ischemic stroke in diabetic individuals. The known risk factors including diabetes contributed differently to the risk of CHD and ischemic stroke in women and in men. Hyperglycemia defined by FPG or 2-h PG increases the risk of ischemic stroke in individuals without diabetes. FPG better predicts stroke mortality in women and 2-h PG in men. The risk of acute CHD and ischemic stroke is higher in men than in women in all ages, but such gender difference is more marked for CHD than for ischemic stroke. CHD risk is higher in men than in women, but the difference is reduced in diabetic population. Diabetes, however, increases stroke risk more in men than in women in all ages.
Resumo:
Background: The aim of the SPHERE study is to design, implement and evaluate tailored practice and personal care plans to improve the process of care and objective clinical outcomes for patients with established coronary heart disease (CHD) in general practice across two different health systems on the island of Ireland.CHD is a common cause of death and a significant cause of morbidity in Ireland. Secondary prevention has been recommended as a key strategy for reducing levels of CHD mortality and general practice has been highlighted as an ideal setting for secondary prevention initiatives. Current indications suggest that there is considerable room for improvement in the provision of secondary prevention for patients with established heart disease on the island of Ireland. The review literature recommends structured programmes with continued support and follow-up of patients; the provision of training, tailored to practice needs of access to evidence of effectiveness of secondary prevention; structured recall programmes that also take account of individual practice needs; and patient-centred consultations accompanied by attention to disease management guidelines.
Methods: SPHERE is a cluster randomised controlled trial, with practice-level randomisation to intervention and control groups, recruiting 960 patients from 48 practices in three study centres (Belfast, Dublin and Galway). Primary outcomes are blood pressure, total cholesterol, physical and mental health status (SF-12) and hospital re-admissions. The intervention takes place over two years and data is collected at baseline, one-year and two-year follow-up. Data is obtained from medical charts, consultations with practitioners, and patient postal questionnaires. The SPHERE intervention involves the implementation of a structured systematic programme of care for patients with CHD attending general practice. It is a multi-faceted intervention that has been developed to respond to barriers and solutions to optimal secondary prevention identified in preliminary qualitative research with practitioners and patients. General practitioners and practice nurses attend training sessions in facilitating behaviour change and medication prescribing guidelines for secondary prevention of CHD. Patients are invited to attend regular four-monthly consultations over two years, during which targets and goals for secondary prevention are set and reviewed. The analysis will be strengthened by economic, policy and qualitative components.
Resumo:
Recently, genome wide association studies (GWAS) have identified a number of single nucleotide polymorphisms (SNPs) as being associated with coronary heart disease (CHD). We estimated the effect of these SNPs on incident CHD, stroke and total mortality in the prospective cohorts of the MORGAM Project. We studied cohorts from Finland, Sweden, France and Northern Ireland (total N=33,282, including 1,436 incident CHD events and 571 incident stroke events). The lead SNPs at seven loci identified thus far and additional SNPs (in total 42) were genotyped using a case-cohort design.We estimated the effect of the SNPs on disease history at baseline, disease events during follow-up and classic risk factors. Multiple testing was taken into account using false discovery rate (FDR) analysis. SNP rs1333049 on chromosome 9p21.3 was associated with both CHD and stroke (HR5=.20, 95% CI 1.08-1.34 for incident CHD events and 1.15, 0.99-1.34 for incident stroke). SNP rs11670734 (19q12) was associated with total mortality and stroke. SNP rs2146807 (10q11.21) showed some association with the fatality of acute coronary event. SNP rs2943634 (2q36.3) was associated with high density lipoprotein (HDL) cholesterol and SNPs rs599839, rs4970834 (1p13.3) and rs17228212 (15q22.23) were associated with non-HDL cholesterol. SNPs rs2943634 (2q36.3) and rs12525353 (6q25.1) were associated with blood pressure. These findings underline the need for replication studies in prospective settings and confirm the candidacy of several SNPs that may play a role in the etiology of cardiovascular disease.
Resumo:
Background Recruitment and retention of patients and healthcare providers in randomised controlled trials (RCTs) is important in order to determine the effectiveness of interventions. However, failure to achieve recruitment targets is common and reasons why a particular recruitment strategy works for one study and not another remain unclear. We sought to describe a strategy used in a multicentre RCT in primary care, to report researchers’ and participants’ experiences of its implementation and to inform future strategies to maximise recruitment and retention. Methods In total 48 general practices and 903 patients were recruited from three different areas of Ireland to a RCT of an intervention designed to optimise secondary prevention of coronary heart disease. The recruitment process involved telephoning practices, posting information, visiting practices, identifying potential participants, posting invitations and obtaining consent. Retention involved patients attending reviews and responding to questionnaires and practices facilitating data collection. Results We achieved high retention rates for practices (100%) and for patients (85%) over an 18-month intervention period. Pilot work, knowledge of the setting, awareness of change in staff and organisation amongst participant sites, rapid responses to queries and acknowledgement of practitioners’ contributions were identified as being important. Minor variations in protocol and research support helped to meet varied, complex and changing individual needs of practitioners and patients and encouraged retention in the trial. A collaborative relationship between researcher and practice staff which required time to develop was perceived as vital for both recruitment and retention. Conclusions Recruiting and retaining the numbers of practices and patients estimated as required to provide findings with adequate power contributes to increased confidence in the validity and generalisability of RCT results. A continuous dynamic process of monitoring progress within trials and tailoring strategies to particular circumstances, whilst not compromising trial protocols, should allow maximal recruitment and retention.