206 resultados para Iinverted pendulum
Resumo:
Aquest projecte consisteix en l’estudi del problema clàssic del pèndol invertit en l’àrea de control. Per tal de poder realitzar aquest estudi s’ha construït un prototip que simuli el comportament d’un pèndol invertit. Seguidament es dissenyen uns controladors PID i LQR per aquest prototip. Finalment s’escull el controlador LQR, que és per al qual es realitzen les simulacions i es programa el prototip real.
Resumo:
Segons el diccionariI, un pèndol és"un cos suspès d"un punt fix de manera que pot oscil·lar sota l"acció combinada de la gravetat i de la inèrcia". Una definició molt eixuta, ateses les seves extraordinàries propietats, que inclouen la generació de formes artístiques extraordinàries i, fins i tot, principis filosòfics d"abast universal.
Resumo:
Coriolis force is an effect which arises in rotating reference frames such as the Earth. This force influences large oceanic motions, atmospheric inertial circles, horizontal and vertical deviations in moving bodies. The Foucault's pendulum is another special case about the Coriolis force influence on macroscopic processes. This pendulum is an example of how experimental sciences can be essential for philosophical and social changes, since it was crucial to prove the Earth's rotation. The Coriolis force has an important role also at microscopic level; it couples vibrational and rotational molecular motions and this fact has consequences in spectroscopic and energetic molecular processes. These points are discussed in this paper.
Resumo:
In this work a particular system is investigated consisting of a pendulum whose point of support is vibrated along a horizontal guide by a two bar linkage driven from a DC motor, considered as a limited power source. This system is nonideal since the oscillatory motion of the pendulum influences the speed of the motor and vice-versa, reflecting in a more complicated dynamical process. This work comprises the investigation of the phenomena that appear when the frequency of the pendulum draws near a secondary resonance region, due to the existing nonlinear interactions in the system. Also in this domain due to the power limitation of the motor, the frequency of the pendulum can be captured at resonance modifying completely the final response of the system. This behavior is known as Sommerfeld effect and it will be studied here for a nonlinear system.
Resumo:
Foi avaliada a atividade antioxidante pelo Sistema β-caroteno/Ácido Linoleico, ensaio do radical DPPH (2,2-difenil-1-picrilhidrazila), do extrato bruto (EB) e frações hexânica (FH), clorofórmica (FC) e acetato de etila (FA) das pimentas malagueta (C. frutescens), cambuci (C. baccatum var. pendulum), cumari (C. baccatum var praetermissum) e pimentão magali (C. annuum var. annuum). As concentrações de capsaicinoides e de fenólicos totais presentes nas pimentas também foram determinadas. Os resultados obtidos demonstraram que as FC e FA das pimentas apresentaram maior concentração de fenólicos totais e capsaicinoides, sendo que a pimenta cumari foi a espécie com maior concentração destes compostos. A melhor atividade antioxidante pelo Sistema β-caroteno/Ácido Linoleico, foi obtida para o EB e FA da pimenta cambuci, seguida do EB da pimenta malagueta. Pelo método DPPH a FC e FA apresentaram menores valores de EC50, sendo a pimenta cumari e cambuci as mais efetivas. Estes resultados demonstram que as pimentas cumari, cambuci e malagueta podem ser utilizadas como agentes antioxidantes naturais em alimentos.
Resumo:
The country has witnessed tremendous increase in the vehicle population and increased axle loading pattern during the last decade, leaving its road network overstressed and leading to premature failure. The type of deterioration present in the pavement should be considered for determining whether it has a functional or structural deficiency, so that appropriate overlay type and design can be developed. Structural failure arises from the conditions that adversely affect the load carrying capability of the pavement structure. Inadequate thickness, cracking, distortion and disintegration cause structural deficiency. Functional deficiency arises when the pavement does not provide a smooth riding surface and comfort to the user. This can be due to poor surface friction and texture, hydro planning and splash from wheel path, rutting and excess surface distortion such as potholes, corrugation, faulting, blow up, settlement, heaves etc. Functional condition determines the level of service provided by the facility to its users at a particular time and also the Vehicle Operating Costs (VOC), thus influencing the national economy. Prediction of the pavement deterioration is helpful to assess the remaining effective service life (RSL) of the pavement structure on the basis of reduction in performance levels, and apply various alternative designs and rehabilitation strategies with a long range funding requirement for pavement preservation. In addition, they can predict the impact of treatment on the condition of the sections. The infrastructure prediction models can thus be classified into four groups, namely primary response models, structural performance models, functional performance models and damage models. The factors affecting the deterioration of the roads are very complex in nature and vary from place to place. Hence there is need to have a thorough study of the deterioration mechanism under varied climatic zones and soil conditions before arriving at a definite strategy of road improvement. Realizing the need for a detailed study involving all types of roads in the state with varying traffic and soil conditions, the present study has been attempted. This study attempts to identify the parameters that affect the performance of roads and to develop performance models suitable to Kerala conditions. A critical review of the various factors that contribute to the pavement performance has been presented based on the data collected from selected road stretches and also from five corporations of Kerala. These roads represent the urban conditions as well as National Highways, State Highways and Major District Roads in the sub urban and rural conditions. This research work is a pursuit towards a study of the road condition of Kerala with respect to varying soil, traffic and climatic conditions, periodic performance evaluation of selected roads of representative types and development of distress prediction models for roads of Kerala. In order to achieve this aim, the study is focused into 2 parts. The first part deals with the study of the pavement condition and subgrade soil properties of urban roads distributed in 5 Corporations of Kerala; namely Thiruvananthapuram, Kollam, Kochi, Thrissur and Kozhikode. From selected 44 roads, 68 homogeneous sections were studied. The data collected on the functional and structural condition of the surface include pavement distress in terms of cracks, potholes, rutting, raveling and pothole patching. The structural strength of the pavement was measured as rebound deflection using Benkelman Beam deflection studies. In order to collect the details of the pavement layers and find out the subgrade soil properties, trial pits were dug and the in-situ field density was found using the Sand Replacement Method. Laboratory investigations were carried out to find out the subgrade soil properties, soil classification, Atterberg limits, Optimum Moisture Content, Field Moisture Content and 4 days soaked CBR. The relative compaction in the field was also determined. The traffic details were also collected by conducting traffic volume count survey and axle load survey. From the data thus collected, the strength of the pavement was calculated which is a function of the layer coefficient and thickness and is represented as Structural Number (SN). This was further related to the CBR value of the soil and the Modified Structural Number (MSN) was found out. The condition of the pavement was represented in terms of the Pavement Condition Index (PCI) which is a function of the distress of the surface at the time of the investigation and calculated in the present study using deduct value method developed by U S Army Corps of Engineers. The influence of subgrade soil type and pavement condition on the relationship between MSN and rebound deflection was studied using appropriate plots for predominant types of soil and for classified value of Pavement Condition Index. The relationship will be helpful for practicing engineers to design the overlay thickness required for the pavement, without conducting the BBD test. Regression analysis using SPSS was done with various trials to find out the best fit relationship between the rebound deflection and CBR, and other soil properties for Gravel, Sand, Silt & Clay fractions. The second part of the study deals with periodic performance evaluation of selected road stretches representing National Highway (NH), State Highway (SH) and Major District Road (MDR), located in different geographical conditions and with varying traffic. 8 road sections divided into 15 homogeneous sections were selected for the study and 6 sets of continuous periodic data were collected. The periodic data collected include the functional and structural condition in terms of distress (pothole, pothole patch, cracks, rutting and raveling), skid resistance using a portable skid resistance pendulum, surface unevenness using Bump Integrator, texture depth using sand patch method and rebound deflection using Benkelman Beam. Baseline data of the study stretches were collected as one time data. Pavement history was obtained as secondary data. Pavement drainage characteristics were collected in terms of camber or cross slope using camber board (slope meter) for the carriage way and shoulders, availability of longitudinal side drain, presence of valley, terrain condition, soil moisture content, water table data, High Flood Level, rainfall data, land use and cross slope of the adjoining land. These data were used for finding out the drainage condition of the study stretches. Traffic studies were conducted, including classified volume count and axle load studies. From the field data thus collected, the progression of each parameter was plotted for all the study roads; and validated for their accuracy. Structural Number (SN) and Modified Structural Number (MSN) were calculated for the study stretches. Progression of the deflection, distress, unevenness, skid resistance and macro texture of the study roads were evaluated. Since the deterioration of the pavement is a complex phenomena contributed by all the above factors, pavement deterioration models were developed as non linear regression models, using SPSS with the periodic data collected for all the above road stretches. General models were developed for cracking progression, raveling progression, pothole progression and roughness progression using SPSS. A model for construction quality was also developed. Calibration of HDM–4 pavement deterioration models for local conditions was done using the data for Cracking, Raveling, Pothole and Roughness. Validation was done using the data collected in 2013. The application of HDM-4 to compare different maintenance and rehabilitation options were studied considering the deterioration parameters like cracking, pothole and raveling. The alternatives considered for analysis were base alternative with crack sealing and patching, overlay with 40 mm BC using ordinary bitumen, overlay with 40 mm BC using Natural Rubber Modified Bitumen and an overlay of Ultra Thin White Topping. Economic analysis of these options was done considering the Life Cycle Cost (LCC). The average speed that can be obtained by applying these options were also compared. The results were in favour of Ultra Thin White Topping over flexible pavements. Hence, Design Charts were also plotted for estimation of maximum wheel load stresses for different slab thickness under different soil conditions. The design charts showed the maximum stress for a particular slab thickness and different soil conditions incorporating different k values. These charts can be handy for a design engineer. Fuzzy rule based models developed for site specific conditions were compared with regression models developed using SPSS. The Riding Comfort Index (RCI) was calculated and correlated with unevenness to develop a relationship. Relationships were developed between Skid Number and Macro Texture of the pavement. The effort made through this research work will be helpful to highway engineers in understanding the behaviour of flexible pavements in Kerala conditions and for arriving at suitable maintenance and rehabilitation strategies. Key Words: Flexible Pavements – Performance Evaluation – Urban Roads – NH – SH and other roads – Performance Models – Deflection – Riding Comfort Index – Skid Resistance – Texture Depth – Unevenness – Ultra Thin White Topping
Resumo:
Since robots are typically designed with an individual actuator at each joint, the control of these systems is often difficult and non-intuitive. This thesis explains a more intuitive control scheme called Virtual Model Control. This thesis also demonstrates the simplicity and ease of this control method by using it to control a simulated walking hexapod. Virtual Model Control uses imagined mechanical components to create virtual forces, which are applied through the joint torques of real actuators. This method produces a straightforward means of controlling joint torques to produce a desired robot behavior. Due to the intuitive nature of this control scheme, the design of a virtual model controller is similar to the design of a controller with basic mechanical components. The ease of this control scheme facilitates the use of a high level control system which can be used above the low level virtual model controllers to modulate the parameters of the imaginary mechanical components. In order to apply Virtual Model Control to parallel mechanisms, a solution to the force distribution problem is required. This thesis uses an extension of Gardner`s Partitioned Force Control method which allows for the specification of constrained degrees of freedom. This virtual model control technique was applied to a simulated hexapod robot. Although the hexapod is a highly non-linear, parallel mechanism, the virtual models allowed text-book control solutions to be used while the robot was walking. Using a simple linear control law, the robot walked while simultaneously balancing a pendulum and tracking an object.
Resumo:
Inside the stones of its most famous buildings, Évora keeps mysteries and secrets which constitute the most hidden side of its cultural identity. A World Heritage site, this town seems to preserve, in its medieval walls, a precious knowledge of the most universal and ancient human emotion: fear. Trying to transcend many of its past and future fears, some of its historical monuments in Gothic style were erected against the fear of death, the most terrible of all fears, which the famous inscription, in the Bones Chapel of the Church of São Francisco, insistently reminds us, through the most disturbing words: “Nós ossos que aqui estamos pelos vossos esperamos”. If the first inquisitors worked in central Europe (Germany, northern Italy, eastern France), later the centres of the Inquisition were established in the Mediterranean regions, especially southern France, Italy, Portugal, and Spain. Consequently, the roots of fear in Évora are common to other towns, where the Inquisition developed a culture of fear, through which we can penetrate into the dark side of the Mediterranean, where people were subjected to the same terrifying methods of persecution and torture. This common geographical and historical context was not ignored by one of the most famous masters of American gothic fiction, Edgar Allan Poe. Through the pages of The Pit and the Pendulum, readers get precise images of the fearful instruments of terror that were able to produce the legend that has made the first grand inquisitor, Tomas de Torquemada, a symbol of ultimate cruelty, bigotry, intolerance, and religious fanaticism, which unfortunately are still the source of our present fears in a time when religious beliefs can be used again as a motif of war and destruction. As Krishnamurti once suggested, only a fundamental realization of the root of all fear can free our minds.
Resumo:
Successful results from training an adaptive controller to use optical information to balance an inverted pendulum are presented in comparison to the training requirements using traditional controller inputs. Results from research into the psychology of the sense of balance in humans are presented as the motivation for the investigation of this new type of controller. The simulated model of the inverted pendulum and the virtual reality environments used to provide the optical input are described The successful introduction of optical information is found to require the preservation of at least two of the traditional input types and entail increased training time for the adaptive controller and reduced performance (measured as the time the pendulum remains upright).
Resumo:
The results from applying a sensor fusion process to an adaptive controller used to balance all inverted pendulum axe presented. The goal of the sensor fusion process was to replace some of the four mechanical measurements, which are known to be sufficient inputs for a linear state feedback controller to balance the system, with optic flow variables. Results from research into the psychology of the sense of balance in humans were the motivation for the investigation of this new type of controller input. The simulated model of the inverted pendulum and the virtual reality environments used to provide the optical input are described. The successful introduction of optical information is found to require the preservation of at least two of the traditional input types and entail increased training till-le for the adaptive controller and reduced performance (measured as the time the pendulum remains upright)
Resumo:
This work presents two schemes of measuring the linear and angular kinematics of a rigid body using a kinematically redundant array of triple-axis accelerometers with potential applications in biomechanics. A novel angular velocity estimation algorithm is proposed and evaluated that can compensate for angular velocity errors using measurements of the direction of gravity. Analysis and discussion of optimal sensor array characteristics are provided. A damped 2 axis pendulum was used to excite all 6 DoF of the a suspended accelerometer array through determined complex motion and is the basis of both simulation and experimental studies. The relationship between accuracy and sensor redundancy is investigated for arrays of up to 100 triple axis (300 accelerometer axes) accelerometers in simulation and 10 equivalent sensors (30 accelerometer axes) in the laboratory test rig. The paper also reports on the sensor calibration techniques and hardware implementation.
Resumo:
Hamiltonian dynamics describes the evolution of conservative physical systems. Originally developed as a generalization of Newtonian mechanics, describing gravitationally driven motion from the simple pendulum to celestial mechanics, it also applies to such diverse areas of physics as quantum mechanics, quantum field theory, statistical mechanics, electromagnetism, and optics – in short, to any physical system for which dissipation is negligible. Dynamical meteorology consists of the fundamental laws of physics, including Newton’s second law. For many purposes, diabatic and viscous processes can be neglected and the equations are then conservative. (For example, in idealized modeling studies, dissipation is often only present for numerical reasons and is kept as small as possible.) In such cases dynamical meteorology obeys Hamiltonian dynamics. Even when nonconservative processes are not negligible, it often turns out that separate analysis of the conservative dynamics, which fully describes the nonlinear interactions, is essential for an understanding of the complete system, and the Hamiltonian description can play a useful role in this respect. Energy budgets and momentum transfer by waves are but two examples.
Resumo:
A weather balloon and its suspended instrument package behave like a pendulum with a moving pivot. This dynamical system is exploited here for the detection of atmospheric turbulence. By adding an accelerometer to the instrument package, the size of the swings induced by atmospheric turbulence can be measured. In test flights, strong turbulence has induced accelerations greater than 5g, where g = 9.81 m s−2. Calibration of the accelerometer data with a vertically orientated lidar has allowed eddy dissipation rate values of between 10−3 and 10−2 m2 s−3 to be derived from the accelerometer data. The novel use of a whole weather balloon and its adapted instrument package can be used as a new instrument to make standardized in situ measurements of turbulence.
Resumo:
Research on inverted pendulum has gained momentum over the last decade on a number of robotic laboratories over the world; due to its unstable proprieties is a good example for control engineers to verify a control theory. To verify that the pendulum can balance we can make some simulations using a closed-loop controller method such as the linear quadratic regulator or the proportional–integral–derivative method. Also the idea of robotic teleoperation is gaining ground. Controlling a robot at a distance and doing that precisely. However, designing the tool to takes the best benefit of the human skills while keeping the error minimal is interesting, and due to the fact that the inverted pendulum is an unstable system it makes a compelling test case for exploring dynamic teleoperation. Therefore this thesis focuses on the construction of a two-wheel inverted pendulum robot, which sensor we can use to do that, how they must be integrated in the system and how we can use a human to control an inverted pendulum. The inverted pendulum robot developed employs technology like sensors, actuators and controllers. This Master thesis starts by presenting an introduction to inverted pendulums and some information about related areas such as control theory. It continues by describing related work in this area. Then we describe the mathematical model of a two-wheel inverted pendulum and a simulation made in Matlab. We also focus in the construction of this type of robot and its working theory. Because this is a mobile robot we address the theme of the teleoperation and finally this thesis finishes with a general conclusion and ideas of future work.
Resumo:
The subject of Classic Gravitation is part of the actual curriculum for High School in Brazil, and it is taught in the first year of that education level. This master thesis presents a research regarding the subject Classic Gravitation in High School. This research was based in two complementary guidelines of research and action. The first guideline was the analysis of 21 didactic books of physics which are the more frequently used in High School, in the city of Natal/RN. The second guideline, worked after being verified the most common deficiencies presents in the didactic books, was the elaboration, followed by a practical application, of a course suggesting how to approach that subject in the classroom. The Parâmetros Curriculares Nacionais para o Ensino Médio (National Curricular Parameters for High School PCNEM) defend that Classic Gravitation is very important in the student s formation and that its study helps the comprehension of many nature s phenomena. Because of this vision of that subject by the PCNEM, the 21 analyzed books were separated in two groups: the first one, containing 10 books, was edited before the spreading of PCNEM, and the second, with 11 books, after that spreading. Whatever the group to which the didactic books belonged, the great majority of them let that subject in a second plan; two of them even suggesting, in the teacher s orientations, that the subject Gravitation can be suppressed in case of insufficient time . These analyses points that the PCNEM had produced no changes in the conception of the authors that wrote books regarding that subject. To analyze the didactic books, we elaborated a script which was used as an analysis tool, in which we put in evidence the relative importance of the historic and philosophic contextualization of the subject, the quotidian experience of the students and the interdisciplinary approach, among other aspects. It became evident that the didactic books give very little emphasis to historic aspects of the knowledge construction, to the relations with the day-by-day questions and to the interdisciplinary character of the subject Gravitation. It calls attention the non concordance among the authors opinions regarding the necessary previous knowledge or prerequisites the students should fulfill in order to begin to study Gravitation. The course we elaborated was given to a group of teachers as well as to students. In those courses we treated theoretical and practical aspects and emphasized historical questions and the ones which are related to people s daily life. The course for teachers was realized as an extra-mural activity of the UFRN and was given by the author of this thesis at the Escola Estadual Francisco Ivo Cavalcanti (a state public school in Natal/RN). There were 23 teachers present, from several public schools and several fields of knowledge. The thesis supervisor and the master degree s colleagues of the author acted as collaborators , reporting the participants opinions and speeches. The course to the students, on the other hand, had the participation of 300 regular students who belonged to 6 different 1st year classes of the High School Escola Marista de Natal (RN), in which the author acts as a physics teacher. The student s course was realized as part of the regular curriculum activities, in which three classes stood under the responsibility of the author and other three classes in charge of another Marista s teacher, who participated as a collaborator . The teacher s course as well as the students one were given in two stages, with five hours each. The first stage was divided in two moments, the first one focused on the survey of the spontaneous conceptions about gravitation, in which we worked basically with experiments of free throwing and pendulum, and the second one focused in theoretical presentations and quarrels about universe s models. In the second stage of the course we improved the study of Kepler s laws and the Newton s Universal Gravitation law, and we used as motivating tools some practices involving the construction of the solar system in scale. As instruments for evaluating both courses we used questionnaires and reported the speeches with participants opinions, beyond usual written evaluations in the course for the students. The teachers who participated in the course showed very good wills in realizing interdisciplinary practices; nevertheless, according their own speeches, they frequently came across the difficulty of how to do . From the experience we had in both courses, we conclude that the approach we propose hear to the teaching of the subject Classic Gravitation , supported on the tripod theory, practice and historical and philosophical aspects, is viable and effective. One hopes that this research may contribute in the formation of a opinion, among the teachers, concerning how to approach the subject of Classic Gravitation, and may offer suggestions in order those who want to apply that approach may develop classroom practices aiming to improve the teaching of that subject, which has a singular importance in the formation of High School students