937 resultados para INVERSE-EMULSION POLYMERIZATION
Resumo:
SiO2/polyacrylamide (PAM) composite was prepared via the polymerization of acrylamide in the presence of silica sol in water/hexane emulsion, and pure SiO2 was also prepared without the use of acrylamide in the same way. Field emission scanning electron micrographs (FESEM) showed that PAM covered the silica nanoparticles to form SiO2/PAM nanospheres, which loosely agglomerated to form SiO2/PAM secondary particles, while SiO2 secondary particles were made up of tightly agglomerated silica nanoparticles. Metallocene catalyst was then immobilized over SiO2 and SiO2/PAM respectively to prepare supported metallocene catalyst for ethylene polymerization. Transmission electron micrographs (TEM) showed that support particles broke up to smaller particles and even nanoparticles in polyethylene (PE) matrix when the support particles were the fragile SiO2/PAM secondary particles, which shows a novel way to prepare silica/polyacrylamide/polyethylene nanocomposite.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Monodisperse latex spheres were obtained by a surfactant free styrene polymerization method and used to obtain colloidal crystals by controlled centrifugation settling. Silica inverse opals were then prepared by using the colloidal crystals as templates and TEOS/ethanol solution. The inverse opals were infiltrated with Rhodamine 6G and laserlike emission was observed at 590 nm under 532 nm pump wavelength. The data show line narrowing of the dye fluorescence and a laser threshold of similar to 0.1 mJ/pulse. Local-field effects and light scattering due to structural defects are the main mechanisms contributing to generation of the laser-action observed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A scheme is presented in which an organic solvent environment in combination with surfactants is used to confine a natively unfolded protein inside an inverse microemulsion droplet. This type of confinement allows a study that provides unique insight into the dynamic structure of an unfolded, flexible protein which is still solvated and thus under near-physiological conditions. In a model system, the protein osteopontin (OPN) is used. It is a highly phosphorylated glycoprotein that is expressed in a wide range of cells and tissues for which limited structural analysis exists due to the high degree of flexibility and large number of post-translational modifications. OPN is implicated in tissue functions, such as inflammation and mineralisation. It also has a key function in tumour metastasis and progression. Circular dichroism measurements show that confinement enhances the secondary structural features of the protein. Small-angle X-ray scattering and dynamic light scattering show that OPN changes from being a flexible protein in aqueous solution to adopting a less flexible and more compact structure inside the microemulsion droplets. This novel approach for confining proteins while they are still hydrated may aid in studying the structure of a wide range of natively unfolded proteins.
Resumo:
Die vorliegende Arbeit behandelt die Polymerisation in nicht-wässrigen Emulsionen – bestehend aus einem perfluorierten Solvens und einem Kohlenwasserstoff - unter Einsatz verschiedener Monomere, Katalysatoren und Polymeristionsmethoden zur Generierung von Polymerpartikeln verschiedenster Art. Es wurde gezeigt, dass in diesen inerten Medien zahlreiche Methoden zur Polymererzeugung unter gleichzeitiger Morphologiekontrolle eingesetzt werden können, die in konventionellen wässrigen, heterophasischen Systemen versagen.rnrnAusgangspunkt war die literaturbekannte Metallocen-katalysierte Synthese von Polyethylen (PE)- und Polypropylen (PP)-Nanopartikeln in perfluorierter Emulsion in Gegenwart hochmolekularer Blockcopolymere als Stabilisierungsagens. Mithilfe kinetischer Untersuchungen hinsichtlich der PE-Synthese wurde im Rahmen dieser Arbeit ein Modell entwickelt, welches den Diffusionsweg eines gasförmigen Monomers über die verschiedenen Phasengrenzen hinweg zum aktiven katalytischen Zentrum in der dispergierten Phase beschreibt. Ferner konnte die Diffusions- und Reaktionsbestimmtheit der Reaktion in Abhängigkeit verschiedener Reaktionsparameter nachgewiesen sowie ein tieferer Einblick über den Ort der Polymerisation in den heterophasischen Systemen erhalten werden.rnrnDie so gewonnenen Erkenntnisse wurden für die erfolgreiche Synthese von Poly(ethylen-1-hexen)-Copolymeren in perfluorierter Emulsion genutzt, wobei der Comonomergehalt im resultierenden Polymer über einen breiten Bereich variiert werden konnte. Neben der Homo- und Copolymerisation von Polyolefinen wurde in der vorliegenden Arbeit weiter gezeigt, dass die heterogenen Fluide zum Aufbau komplexerer Morphologien wie Kern-Schale-Nanopartikeln genutzt werden können; so gelangte man zu Partikeln mit Kernen aus isotaktischem PP, ummantelt von „weichem“ Poly(n-butylacrylat).rnrnEin weiterer Fokus dieser Arbeit lag auf der Erweiterung der Anwendungsmöglichkeiten der perfluorierten Emulsionen, und so wurde bspw. der Zugang zu Polymerdispersionen aus konjugierten Materialien mit Partikeldurchmessern von 70-100 nm mittels Cyclopolymerisation eröffnet. Ferner konnten als bioverträgliche und biologisch abbaubare Materialien Partikel aus epsilon-Caprolacton in koordinativ-anionischer Polymerisation gewonnen werden. Im Zuge dessen wurden Emulgatoren entwickelt, die den Einsatz polarer Monomere in perfluorierter Emulsion erlauben.rnrnSchlussendlich konnten mittels trifunktioneller Polymere mit lipophilen und fluorophilen Gruppen sowie Lewis-basischen Ankergruppen Ag- und Cu-Partikel dergestalt oberflächenmodifiziert werden, dass ein homogenes Einbetten in eine perfluorierte Matrix möglich war, was antibakterielle perfluorierte Werkstoffe - erwiesen an E. coli - lieferte.
Resumo:
A synthetic route was designed for the incorporation of inorganic materials within water-based miniemulsions with a complex and adjustable polymer composition. This involved co-homogenization of two inverse miniemulsions constituting precursors of the desired inorganic salt dispersed within a polymerizable continuous phase, followed by transfer to a direct miniemulsion via addition to an o/w surfactant solution with subsequent homogenization and radical polymerization. To our knowledge, this is the first work done where a polymerizable continuous phase has been used in an inverse (mini)emulsion formation followed by transfer to a direct miniemulsion, followed by polymerization, so that the result is a water-based dispersion. The versatility of the process was demonstrated by the synthesis of different inorganic pigments, but also the use of unconventional mixture of vinylic monomers and epoxy resin as the polymerizable phase (unconventional as a miniemulsion continuous phase but typical combination for coating applications). Zinc phosphate, calcium carbonate and barium sulfate were all successfully incorporated in the polymer-epoxy matrix. The choice of the system was based on a typical functional coatings system, but is not limited to. This system can be extended to incorporate various inorganic and further materials as long as the starting materials are water-soluble or hydrophilic. rnThe hybrid zinc phosphate – polymer water-based miniemulsion prepared by the above route was then applied to steel panels using autodeposition process. This is considered the first autodeposition coatings process to be carried out from a miniemulsion system containing zinc phosphate particles. Those steel panels were then tested for corrosion protection using salt spray tests. Those corrosion tests showed that the hybrid particles can protect substrate from corrosion and even improve corrosion protection, compared to a control sample where corrosion protection was performed at a separate step. Last but not least, it is suggested that corrosion protection mechanism is related to zinc phosphate mobility across the coatings film, which was proven using electron microscopy techniques.
Resumo:
In this thesis, different complex colloids were prepared by the process of solvent evaporation from emulsion droplets (SEED). The term “complex” is used to include both an addressable functionality as well as the heterogeneous nature of the colloids.Firstly, as the SEED process was used throughout the thesis, its mechanism especially in regard to coalescence was investigated,. A wide variety of different techniques was employed to study the coalescence of nanodroplets during the evaporation of the solvent. Techniques such as DLS or FCS turned out not to be suitable methods to determine droplet coalescence because of their dependence on dilution. Thus, other methods were developed. TEM measurements were conducted on mixed polymeric emulsions with the results pointing to an absence of coalescence. However, these results were not quantifiable. FRET measurements on mixed polymeric emulsions also indicated an absence of coalescence. Again the results were not quantifiable. The amount of coalescence taking place was then quantified by the application of DC-FCCS. This method also allowed for measuring coalescence in other processes such as the miniemulsion polymerization or the polycondensation reaction on the interface of the droplets. By simulations it was shown that coalescence is not responsible for the usually observed broad size distribution of the produced particles. Therefore, the process itself, especially the emulsification step, needs to be improved to generate monodisperse colloids.rnThe Janus morphology is probably the best known among the different complex morphologies of nanoparticles. With the help of functional polymers, it was possible to marry click-chemistry to Janus particles. A large library of functional polymers was prepared by copolymerization and subsequent post-functionalization or by ATRP. The polymers were then used to generate Janus particles by the SEED process. Both dually functionalized Janus particles and particles with one functionalized face could be obtained. The latter were used for the quantification of functional groups on the surface of the Janus particles. For this, clickable fluorescent dyes were synthesized. The degree of functionality of the polymers was found to be closely mirrored in the degree of functionality of the surface. Thus, the marriage of click-chemistry to Janus particles was successful.Another complex morphology besides Janus particles are nanocapsules. Stimulus-responsive nanocapsules that show triggered release are a highly demanding and interesting system, as nanocapsules have promising applications in drug delivery and in self-healing materials. To achieve heterogeneity in the polymer shell, the stimulus-responsive block copolymer PVFc-b-PMMA was employed for the preparation of the capsules. The phase separation of the two blocks in the shell of the capsules led to a patchy morphology. These patches could then be oxidized resulting in morphology changes. In addition, swelling occurred because of the hydrophobic to hydrophilic transition of the patches induced by the oxidation. Due to the swelling, an encapsulated payload could diffuse out of the capsules, hence release was achieved.The concept of using block copolymers responsive to one stimulus for the preparation of stimulus-responsive capsules was extended to block copolymers responsive to more than one stimulus. Here, a block copolymer responsive to oxidation and a pH change as well as a block copolymer responsive to a pH change and temperature were studied in detail. The release from the nanocapsules could be regulated by tuning the different stimuli. In addition, by encapsulating stimuli-responsive payloads it was possible to selectively release a payload upon one stimulus but not upon the other one.In conclusion, the approaches taken in the course of this thesis demonstrate the broad applicability and usefulness of the SEED process to generate complex colloids. In addition, the experimental techniques established such as DC-FCCS will provide further insight into other research areas as well.
Resumo:
Experimental time series for a nonequilibrium reaction may in some cases contain sufficient data to determine a unique kinetic model for the reaction by a systematic mathematical analysis. As an example, a kinetic model for the self-assembly of microtubules is derived here from turbidity time series for solutions in which microtubules assemble. The model may be seen as a generalization of Oosawa's classical nucleation-polymerization model. It reproduces the experimental data with a four-stage nucleation process and a critical nucleus of 15 monomers.
Resumo:
Block copolymers have become an integral part of the preparation of complex architectures through self-assembly. The use of reversible addition-fragmentation chain transfer (RAFT) allows blocks ranging from functional to nonfunctional polymers to be made with predictable molecular weight distributions. This article models block formation by varying many of the kinetic parameters. The simulations provide insight into the overall polydispersities (PDIs) that will be obtained when the chain-transfer constants in the main equilibrium steps are varied from 100 to 0.5. When the first dormant block [polymer-S-C(Z)=S] has a PDI of 1 and the second propagating radical has a low reactivity to the RAFT moiety, the overall PDI will be greater than 1 and dependent on the weight fraction of each block. When the first block has a PDI of 2 and the second propagating radical has a low reactivity to the RAFT moiety, the PDI will decrease to around 1.5 because of random coupling of two broad distributions. It is also shown how we can in principle use only one RAFT agent to obtain block copolymers with any desired molecular weight distribution. We can accomplish this by maintaining the monomer concentration at a constant level in the reactor over the course of the reaction. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Ring opening metathesis polymerization (ROMP) is a variant of olefin metathesis used to polymerize strained cyclic olefins. Ruthenium-based Grubbs’ catalysts are widely used in ROMP to produce industrially important products. While highly efficient in organic solvents such as dichloromethane and toluene, these hydrophobic catalysts are not typically applied in aqueous systems. With the advancements in emulsion and miniemulsion polymerization, it is promising to conduct ROMP in an aqueous dispersed phase to generate well-defined latex nanoparticles while improving heat transfer and reducing the use of volatile organic solvents (VOCs). Herein I report the efforts made using a PEGylated ruthenium alkylidene as the catalyst to initiate ROMP in an oil-in-water miniemulsion. 1H NMR revealed that the synthesized PEGylated catalyst was stable and reactive in water. Using 1,5-cyclooctadiene (COD) as monomer, we showed the highly efficient catalyst yielded colloidally stable polymer latexes with ~ 100% conversion at room temperature. Kinetic studies demonstrated first-order kinetics with good livingness as confirmed by the shift of gel permeation chromatography (GPC) traces. Depending on the surfactants used, the particle sizes ranged from 100 to 300 nm with monomodal distributions. The more strained cyclic olefin norbornene (NB) could also be efficiently polymerized with a PEGylated ruthenium alkylidene in miniemulsion to full conversion and with minimal coagulum formation.
Resumo:
Isolation of a faulted segment, from either side of a fault, in a radial feeder that has several converter interfaced DGs is a challenging task when current sensing protective devices are employed. The protective device, even if it senses a downstream fault, may not operate if fault current level is low due to the current limiting operation of converters. In this paper, a new inverse type relay is introduced based on line admittance measurement to protect a distribution network, which has several converter interfaced DGs. The basic operation of this relay, its grading and reach settings are explained. Moreover a method is proposed to compensate the fault resistance such that the relay operation under this condition is reliable. Then designed relay performances are evaluated in a radial distribution network. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations.
Resumo:
The knee forces and moments estimated by inverse dynamics and directly measured by a multiaxial transducer were compared during the gait of a transfemoral amputee. The estimated and directly measured forces and moments were relatively close. However, 3D inverse dynamics estimated only partially the forces and moments associated with the deformation of the prosthetic foot and locking of knee mechanism.
Resumo:
Inverse dynamics is the most comprehensive method that gives access to the net joint forces and moments during walking. However it is based on assumptions (i.e., rigid segments linked by ideal joints) and it is known to be sensitive to the input data (e.g., kinematic derivatives, positions of joint centres and centre of pressure, inertial parameters). Alternatively, transducers can be used to measure directly the load applied on the residuum of transfemoral amputees. So, the purpose of this study was to compare the forces and moments applied on a prosthetic knee measured directly with the ones calculated by three inverse dynamics computations - corresponding to 3 and 2 segments, and « ground reaction vector technique » - during the gait of one patient. The maximum RMSEs between the estimated and directly measured forces (i.e., 56 N) and moment (i.e., 5 N.m) were relatively small. However the dynamic outcomes of the prosthetic components (i.e., absorption of the foot, friction and limit stop of the knee) were only partially assessed with inverse dynamic methods.
Resumo:
The accuracy of data derived from linked-segment models depends on how well the system has been represented. Previous investigations describing the gait of persons with partial foot amputation did not account for the unique anthropometry of the residuum or the inclusion of a prosthesis and footwear in the model and, as such, are likely to have underestimated the magnitude of the peak joint moments and powers. This investigation determined the effect of inaccuracies in the anthropometric input data on the kinetics of gait. Toward this end, a geometric model was developed and validated to estimate body segment parameters of various intact and partial feet. These data were then incorporated into customized linked-segment models, and the kinetic data were compared with that obtained from conventional models. Results indicate that accurate modeling increased the magnitude of the peak hip and knee joint moments and powers during terminal swing. Conventional inverse dynamic models are sufficiently accurate for research questions relating to stance phase. More accurate models that account for the anthropometry of the residuum, prosthesis, and footwear better reflect the work of the hip extensors and knee flexors to decelerate the limb during terminal swing phase.