972 resultados para INTERACTING GALAXIES
Resumo:
In this paper we propose that the compressive tidal held in the centers of flat-core early-type galaxies and ultraluminous galaxies compresses molecular clouds producing dense gas observed in the centers of these galaxies. The effect of galactic tidal fields is usually considered disruptive in the literature. However, for some galaxies, the mass profile flattens toward the center and the resulting galactic tidal field is not disruptive, but instead it is compressive within the flat-core region. We have used the virial theorem to determine the minimum density of a molecular cloud to be stable and gravitationally bound within the tidally compressive region of a galaxy. We have applied the mechanism to determine the mean molecular cloud densities in the centers of a sample of flat-core, early-type galaxies and ultraluminous galaxies. For early-type galaxies with a core-type luminosity profile, the tidal held of the galaxy is compressive within half the core radius. We have calculated the mean gas densities for molecular gas in a sample of early-type galaxies which have already been detected in CO emission, and we obtain mean densities of [n] similar to 10(3)-10(6) cm(-3) within the central 100 pc radius. We also use our model to calculate the molecular cloud densities in the inner few hundred parsecs of a sample of ultraluminous galaxies. From the observed rotation curves of these galaxies we show that they have a compressive core within their nuclear region. Our model predicts minimum molecular gas densities in the range 10(2)-10(4) cm(-3) in the nuclear gas disks; the smaller values are applicable typically for galaxies with larger core radii. The resulting density values agree well with the observed range. Also, for large core radii, even fairly low-density gas (similar to 10(2) cm(-3)) can remain bound and stable close to the galactic center.
Resumo:
The positive element (PE) (-69 to -98 bp) within the 5'-proximal region of the CYP2B1B2 gene (+1 to -179 bp) of rat liver is essential for phenobarbitone (PB) response and gives a single major complex with the rat liver cytosol in gel shift analysis. This complex corresponds to complex I (top) of the three complexes given by the nuclear extracts. PB treatment of rats leads to a decrease in complex I formation with the cytosol and PE and an increase in the same with the nuclear extract in gel shift analysis. Both the changes are counteracted by simultaneous okadaic acid administration. The nuclear protein giving rise to complex I has been isolated and has an M-r of 26 kDa. The cytosolic counterpart consists of two species, 26 and 28 kDa, as revealed by Southwestern blot analysis using labeled PE. It is concluded that PB treatment leads to the translocation accompanied by processing of the cytosolic protein species into the nucleus that requires protein dephosphorylation. It is suggested that PB may exert a global regulation on the transcription of many genes by modulating the phosphorylation status of different protein factors involved in transcriptional regulation. (C) 2002 Elsevier Science (USA).
Resumo:
Recent observations have shown that most of the warps in the disk galaxies are asymmetric. However there exists no generic mechanism to generate these asymmetries in warps. We have shown that a rich variety of possible asymmetries in the z-distribution of the spiral galaxies can naturally arise due to a dynamical wave interference between the first two bending modes i.e. bowl-shaped mode(m=0) and S-shaped warping mode(m = 1) in the galactic disk embedded in a dark matter halo. We show that the asymmetric warps are more pronounced when the dark matter content within the optical disk is lower as in early-type galaxies.
Resumo:
We measure the non-axisymmetry in the luminosity distribution in the central few kpc of a sample of advanced mergers of galaxies, by analyzing their 2MASS images. All mergers show a high central asymmetry: the centres of isophotes show a striking sloshing pattern with a spatial variation of upto 30% within the central 1 kpc; and the Fourier amplitude for lopsidedness (m = 1) shows high values upto 0.2 within the central 5 kpc. The central asymmetry is estimated to be long-lived, lasting for ~ a few Gyr or ~ 100 local dynamical timescales. This will significantly affect the dynamical evolution of this region, by helping fuel the central active galactic nucleus, and also by causing the secular growth of the bulge driven by lopsidedness.
Resumo:
In this paper, we model dwarf galaxies as a two-component system of gravitationally coupled stars and atomic hydrogen gas in the external force field of a pseudo-isothermal dark matter halo, and numerically obtain the radial distribution of HI vertical scale heights. This is done for a group of four dwarf galaxies (DDO 154, Ho II, IC 2574 and NGC 2366) for which most necessary input parameters are available from observations. The formulation of the equations takes into account the rising rotation curves generally observed in dwarf galaxies. The inclusion of self-gravity of the gas into the model at par with that of the stars results in scale heights that are smaller than what was obtained by previous authors. This is important as the gas scale height is often used for deriving other physical quantities. The inclusion of gas self-gravity is particularly relevant in the case of dwarf galaxies where the gas cannot be considered a minor perturbation to the mass distribution of the stars. We find that three out of four galaxies studied show a flaring of their HI discs with increasing radius, by a factor of a few within several disc scale lengths. The fourth galaxy has a thick HI disc throughout. This flaring arises as a result of the gas velocity dispersion remaining constant or decreasing only slightly while the disc mass distribution declines exponentially as a function of radius.
Resumo:
A sample of 27 disturbed galaxies that show signs of interaction but have a single nucleus were selected from the Arp and the Arp-Madore catalogues. For these, the Ks band images from the Two Micron All Sky Survey (2MASS) are analysed to obtain their radial luminosity pro�les and other structural parameters. We �nd that in spite of their similar optical appearance, the sample galaxies vary in their dynamical properties, and fall into two distinct classes. The �rst class consists of galaxies which can be described by a single r1=4 law and the second class consists of galaxies that show an outer exponential disk. A few galaxies that have disturbed pro�les cannot be �t into either of the above classes. However, all the galaxies are similar in all other parameters such as the far-infrared colours, the molecular hydrogen content and the central velocity dispersion. Thus, the dynamical parameters of these sets seem to be determined by the ratio of the initial masses of the colliding galaxies. We propose that the galaxies in the �rst class result from a merger of spiral galaxies of equal masses whereas the second class of galaxies results from a merger of unequal mass galaxies. The few objects that do not fall into either category show a disturbed luminosity pro�le and a wandering centre, which is indicative of these being unrelaxed mergers. Of the 27 galaxies in our sample, 9 show elliptical-like pro�les and 13 show an outer exponential. Interestingly, Arp 224, the second oldest merger remnant of the Toomre sequence shows an exponential disk in the outer parts.
Resumo:
In our work we have used the atomic hydrogen [HΙ] gas distribution in the HΙ 21-cm line emission to study the dark matter halo perturbations. For tHΙs analysis, the 2-D HΙ surface density and velocity maps (arcHΙval) of the galaxies in the Eridanus group (obtained using the GMRT) and in the Ursa Major group (obtained from WSRT) were used. In addition a few HΙckson Compact Groups of galaxies were also studied using the GMRT. The HΙ maps of these galaxies were Fourier analysed to estimate the asymmetry in the distribution and motion of gas. The average asymmetry parameter in the 1.5 to 2.5 K′-band scale lengths was found to be ~ 0.27 for the Eridanus group of galaxies wHΙle it was ~ 0.14 for the Ursa Major group of galaxies. The asymmetries in the distribution of HΙ as a function of Hubble type of galaxies were also studied and was found to be directly correlated with the compactness of the groups. In addition, the trend in the asymmetry as a function of the Hubble type of galaxies was opposite to that seen in the field galaxies, i.e., in the group galaxies, the early type galaxies showed more asymmetry than late type. These two aspects indicated that tidal interactions between the galaxies in a group environment to be the major cause of asymmetries. The observed asymmetry parameters were consistent with recent numerical simulations of asymmetries of gas disk caused by fly-by interactions. We have also estimated the perturbation of dark matter halo using the asymmetry parameter obtained from the Fourier series analysis of the surface density maps.
Resumo:
We present the magnetic properties of polycrystalline Dy1−xSrxMnO3 (0.1 ≤ x ≤ 0.4) with an orthorhombic (o) crystal structure. The parent compound, o-DyMnO3, undergoes an incommensurate antiferromagnetic ordering of the Mn spins at 39 K, followed by a spiral order at 18 K. A further antiferromagnetic transition at 5 K marks an ordering of the Dy-sublattice. Doping of divalent Sr ions results in diverse magnetization phenomena. The zero-field cooled (ZFC) and field cooled (FC) magnetization curves display the presence of strongly interacting magnetic sublattices. For x = 0.1 and 0.2, a bifurcation between the ZFC and FC magnetization sets in at around 30 and 32 K, respectively. The ZFC magnetization peaks at about 5 K, indicating antiferromagnetic Dy-couplings similar to the case of o-DyMnO3. For x = 0.3, clear signatures of ferrimagnetism and strong anisotropy are found, including negative magnetization. The compound with x = 0.4 behaves as a spin glass, similar to Dy0.5Sr0.5MnO3.
Resumo:
Examining theories with an extended strong interaction sector such as axigluons or flavour universal colorons, we find that the constraints obtained from the current data on $t \bar t$ production at the Tevatron are in the range of $\sim {\cal O}$ TeV and thus competitive with those obtained from the dijet data. We point out that for large axigluon/coloron masses, the limits on the coloron mass may be different than those for the axigluon even for $\cot \xi = 1$. We also compute the expected forward-backward asymmetry for the case of the axigluons which would allow it to be discriminated against the SM as also the colorons. We further find that at the LHC, the signal should be visible in the $t \bar t$ invariant mass spectrum for a wide range of axigluon and coloron masses that are still allowed. We point out how top polarisation may be used to further discriminate the axigluon and coloron case from the SM as well as from each other.
Resumo:
By means of N-body simulations we investigate the impact of minor mergers on the angular momentum and dynamical properties of the merger remnant. Our simulations cover a range of initial orbital characteristics and gas-to-stellar mass fractions (from 0 to 20%), and include star formation and supernova feedback. We confirm and extend previous results by showing that the specific angular momentum of the stellar component always decreases independently of the orbital parameters or morphology of the satellite, and that the decrease in the rotation velocity of the primary galaxy is accompanied by a change in the anisotropy of the orbits. However, the decrease affects only the old stellar population, and not the new population formed from gas during the merging process. This means that the merging process induces an increasing difference in the rotational support of the old and young stellar components, with the old one lagging with respect to the new. Even if our models are not intended specifically to reproduce the Milky Way and its accretion history, we find that, under certain conditions, the modeled rotational lag found is compatible with that observed in the Milky Way disk, thus indicating that minor mergers can be a viable way to produce it. The lag can increase with the vertical distance from the disk midplane, but only if the satellite is accreted along a direct orbit, and in all cases the main contribution to the lag comes from stars originally in the primary disk rather than from stars in the satellite galaxy. We also discuss the possibility of creating counter-rotating stars in the remnant disk, their fraction as a function of the vertical distance from the galaxy midplane, and the cumulative effect of multiple mergers on their creation.
Resumo:
We present global multidimensional numerical simulations of the plasma that pervades the dark matter haloes of clusters, groups and massive galaxies (the intracluster medium; ICM). Observations of clusters and groups imply that such haloes are roughly in global thermal equilibrium, with heating balancing cooling when averaged over sufficiently long time- and length-scales; the ICM is, however, very likely to be locally thermally unstable. Using simple observationally motivated heating prescriptions, we show that local thermal instability (TI) can produce a multiphase medium with similar to 104 K cold filaments condensing out of the hot ICM only when the ratio of the TI time-scale in the hot plasma (tTI) to the free-fall time-scale (tff) satisfies tTI/tff? 10. This criterion quantitatively explains why cold gas and star formation are preferentially observed in low-entropy clusters and groups. In addition, the interplay among heating, cooling and TI reduces the net cooling rate and the mass accretion rate at small radii by factors of similar to 100 relative to cooling-flow models. This dramatic reduction is in line with observations. The feedback efficiency required to prevent a cooling flow is similar to 10-3 for clusters and decreases for lower mass haloes; supernova heating may be energetically sufficient to balance cooling in galactic haloes. We further argue that the ICM self-adjusts so that tTI/tff? 10 at all radii. When this criterion is not satisfied, cold filaments condense out of the hot phase and reduce the density of the ICM. These cold filaments can power the black hole and/or stellar feedback required for global thermal balance, which drives tTI/tff? 10. In comparison to clusters, groups have central cores with lower densities and larger radii. This can account for the deviations from self-similarity in the X-ray luminositytemperature () relation. The high-velocity clouds observed in the Galactic halo can be due to local TI producing multiphase gas close to the virial radius if the density of the hot plasma in the Galactic halo is >rsim 10-5 cm-3 at large radii.
Resumo:
We study the possibility of finger printing a strongly interacting W boson sector which is consistent with present day LHC searches at the ILC with longitudinal as well as transversely polarized electron and positron beams. We account for the final state interaction using a suitable Omnes formalism in terms of a plausible resonance description, and carry out thorough analyses of cross sections, asymmetries and angular distributions of the W's. We carry out a comparison with other extensions of the Standard Model, where heavy additional Z' bosons arise naturally. We also consider the effect of the strong final state interaction on a correlation that depends on (phi(-) -phi(+)),where the phi-(+) are the azimuthal angles of decay leptons, and find that it is a useful discriminant.
Resumo:
We present thermal and electrical transport measurements of low-density (10(14) m(-2)), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We find that even in the supposedly strongly localized regime, where the electrical resistivity of the system is two orders of magnitude greater than the quantum of resistance h/e(2), the thermopower decreases linearly with temperature indicating metallicity. Remarkably, the magnitude of the thermopower exceeds the predicted value in noninteracting metallic 2DESs at similar carrier densities by over two orders of magnitude. Our results indicate a new quantum state and possibly a novel class of itinerant quasiparticles in dilute 2DESs at low temperatures where the Coulomb interaction plays a pivotal role.
Resumo:
Generation and study of synthetic gauge fields has enhanced the possibility of using cold atom systems as quantum emulators of condensed matter Hamiltonians. In this article we describe the physics of interacting spin -1/2 fermions in synthetic non-Abelian gauge fields which induce a Rashba spin-orbit interaction on the motion of the fermions. We show that the fermion system can evolve to a Bose-Einstein condensate of a novel boson which we call rashbon. The rashbon-rashbon interaction is shown to be independent of the interaction between the constituent fermions. We also show that spin-orbit coupling can help enhancing superfluid transition temperature of weak superfluids to the order of Fermi temperature. A non-Abelian gauge field, when used in conjunction with another potential, can generate interesting Hamiltonians such as that of a magnetic monopole.
Resumo:
Laminar natural convection in a series of thermally interacting cavities is numerically studied. Each cavity consists of a conducting bottom wall with a surface mounted heater. The side walls of the cavities are isothermally cooled. Each cavity thermally interacts with its adjacent cavities through the conducting walls. Flow and heat transfer characteristics are studied in detail for various Rayleigh numbers. The convection characteristics in multiple cavities are compared with those in single independent cavity. The thermal interaction between the cavities results in lower temperatures compared with those in independent cavities. While heat is rejected into the adjacent upper cavity through some portion of the conducting wall, heat is received from the adjacent cavity through the remaining portion of the wall. The influence of substrate conductivity on heat exchange between adjacent cavities are examined. Substrate conductivity shows strong effect on temperature distribution. When cooling at both vertical sides is changed to one side cooling, the heat transfer characteristics are changed drastically and many interesting flow features are observed. Effects of cavity aspect ratio is studied and higher heat transfer rates are observed at higher aspect ratios. Correlations for dimensionless temperature maximum and average Nusselt number are presented in terms of Rayleigh number.