841 resultados para INTELIGÊNCIA ARTIFICIAL
Resumo:
A Descoberta de Conhecimento em Banco de Dados (DCBD) é uma nova área de pesquisa que envolve o processo de extração de conhecimento útil implícito em grandes bases de dados. Existem várias metodologias para a realização de um processo de DCBD cuja essência consiste basicamente nas fases de entendimento do domínio do problema, pré-processamento, mineração de dados e pós-processamento. Na literatura sobre o assunto existem muitos trabalhos a respeito de mineração de dados, porém pouco se encontra sobre o processo de pré-processamento. Assim, o objetivo deste trabalho consiste no estudo do pré-processamento, já que é a fase que consome a maior parte do tempo e esforço de todo o processo de DCBD pois envolve operações de entendimento, seleção, limpeza e transformação de dados. Muitas vezes, essas operações precisam ser repetidas de modo a aprimorar a qualidade dos dados e, conseqüentemente, melhorar também a acurácia e eficiência do processo de mineração. A estrutura do trabalho abrange cinco capítulos. Inicialmente, apresenta-se a introdução e motivação para trabalho, juntamente com os objetivos e a metodologia utilizada. No segundo capítulo são abordadas metodologias para o processo de DCBD destacando-se CRISP-DM e a proposta por Fayyad, Piatetsky-Shapiro e Smyth. No terceiro capítulo são apresentadas as sub-fases da fase de pré-processamento contemplando-se entendimento, seleção, limpeza e transformação de dados, bem como os principais métodos e técnicas relacionados às mesmas. Já no quarto capítulo são descritos os experimentos realizados sobre uma base de dados real. Finalmente, no quinto capítulo são apresentadas as considerações finais sobre pré-processamento no processo de DCBD, apontando as dificuldades encontradas na prática, contribuições do presente trabalho e pretensões da continuidade do mesmo. Considera-se como principais contribuições deste trabalho a apresentação de métodos e técnicas de pré-processamento existentes, a comprovação da importância da interatividade com o especialista do domínio ao longo de todo o processo de DCBD, mas principalmente nas tomadas de decisões da fase de pré-processamento, bem como as sugestões de como realizar um pré-processamento sobre uma base de dados real.
Resumo:
A mineração de dados constitui o processo de descoberta de conhecimento interessante, com a utilização de métodos e técnicas que permitem analisar grandes conjuntos de dados para a extração de informação previamente desconhecida, válida e que gera ações úteis, de grande ajuda para a tomada de decisões estratégicas. Dentre as tarefas de mineração de dados, existem aquelas que realizam aprendizado não-supervisionado, o qual é aplicado em bases de dados não-classificados, em que o algoritmo extrai as características dos dados fornecidos e os agrupa em classes. Geralmente, o aprendizado não-supervisionado é aplicado em tarefas de agrupamento, que consistem em agrupar os dados de bancos de dados volumosos, com diferentes tipos de dados em classes ou grupos de objetos que são similares dentro de um mesmo grupo e dissimilares em diferentes grupos desses bancos de dados, de acordo com alguma medida de similaridade. Os agrupamentos são usados como ponto de partida para futuras investigações. Este trabalho explora, mediante a realização de um estudo de caso, o uso de agrupamento como tarefa de mineração de dados que realiza aprendizado nãosupervisionado, para avaliar a adequação desta tecnologia em uma base de dados real da área de saúde. Agrupamento é um tema ativo em pesquisas da área pelo seu potencial de aplicação em problemas práticos. O cenário da aplicação é o Sistema de Informações Hospitalares do SUS, sob a gestão da Secretaria Estadual de Saúde do Rio Grande do Sul. Mensalmente, o pagamento de um certo número de internações é bloqueado, uma vez que a cobrança de internações hospitalares é submetida a normas do SUS e a critérios técnicos de bloqueio estabelecidos pela Auditoria Médica da SES para verificar a ocorrência de algum tipo de impropriedade na cobrança dos procedimentos realizados nessas internações hospitalares. A análise de agrupamento foi utilizada para identificar perfis de comportamentos ou tendências nas internações hospitalares e avaliar desvios ou outliers em relação a essas tendências e, com isso, descobrir padrões interessantes que auxiliassem na otimização do trabalho dos auditores médicos da SES. Buscou-se ainda compreender as diferentes configurações de parâmetros oferecidos pela ferramenta escolhida para a mineração de dados, o IBM Intelligent Miner, e o mapeamento de uma metodologia de mineração de dados, o CRISP-DM, para o contexto específico deste estudo de caso. Os resultados deste estudo demonstram possibilidades de criação e melhora dos critérios técnicos de bloqueio das internações hospitalares que permitem a otimização do trabalho de auditores médicos da SES. Houve ainda ganhos na compreensão da tecnologia de mineração de dados com a utilização de agrupamento no que se refere ao uso de uma ferramenta e de uma metodologia de mineração de dados, em que erros e acertos evidenciam os cuidados que devem ser tomados em aplicações dessa tecnologia, além de contribuírem para o seu aperfeiçoamento.
Resumo:
Este trabalho está relacionado às áreas de Sistemas Multiagentes, Simulação Computacional e Emoções. A partir do estudo destas áreas de pesquisa, foi proposto e desenvolvido um protótipo para um ambiente de simulação baseado em agentes com emoções. Os sistemas multiagentes têm sido utilizados nas mais diversas áreas de pesquisa, não apenas para a área acadêmica, mas também para fins comerciais. Isso ocorre devido a características importantes que estes possuem, como flexibilidade e cooperação. Estas características são úteis para um grande número de aplicações, como para simulação de situações reais, pois os modelos de simulação desenvolvidos utilizando a tecnologia de agentes são muito eficazes e versáteis no estudo dos mais diferentes problemas. Emoções vêm sendo estudadas há algum tempo, pois elas influenciam a tomada de decisão de todas as suas atividades. A tentativa de expressar emoções é algo complexo, dependendo de diversos fatores, tanto sociais como fisiológicos. Objetivando a abrangência das pesquisas na área de sistemas multiagentes, este trabalho propõe o desenvolvimento de um protótipo para um ambiente de simulação baseado em agentes com emoções, utilizando como base para a estruturação das emoções o modelo OCC. Este novo ambiente é chamado AFRODITE. De forma a melhor definir como o AFRODITE seria implementado, foram estudados quatro ambientes de simulação baseados em agentes existentes - SIEME, SWARM, SeSAm e SIMULA, e alguns aspectos destes foram utilizados na construção do novo ambiente. Para demonstrar como o AFRODITE é utilizado, três exemplos de aplicações de áreas de conhecimentos diferentes foram modelados: o IPD (Iterated Prisoner’s Dilemma), da área de Teoria dos Jogos; Simulação de Multidões, da área de Engenharia de Segurança; e Venda de aparelhos celulares com serviço WAP, da área de Telecomunicações. Através dos três exemplos modelados foi possível demonstrar que o ambiente proposto é de fácil utilização e que a tarefa de inserção de emoções nas regras de comportamento pode ser realizada pelo usuário de forma transparente.
Resumo:
Com a proliferação de computadores pessoais e a popularização da Internet, as novas tecnologias da comunicação começam a provocar impactos no setor educacional, com a promessa de construção de cenários inovadores, apoiados em diferentes formas de educação baseada na Web. Estas inovações tecnológicas aplicadas ao ensino caracterizam a intensificação dos processos de educação à distância como uma das tendências mais marcantes desse final de milênio. A tendência destas inovações é crescer e juntamente com a Internet contribuir para a melhoria do ensino e/ou aprendizagem a distância. A Educação à Distância (EAD) tem sido um termo usado para qualquer forma de estudo em que os alunos não estejam em contato direto com seu professor. Este tipo de ensino pode ser considerado como uma alternativa educacional capaz de propiciar a ampliação de oportunidades educativas, através de programas de qualidade. Atualmente, para desenvolver ambientes para o ensino a distância são utilizados os conceitos de Inteligência Artificial Distribuída, mais precisamente o conceito de sistemas multiagentes, com a finalidade de aprimorar e monitorar o ensino através da Internet. O sistema AME-A proposto por D’Amico é um exemplo de ambiente que utiliza a tecnologia de multiagentes. Ele é constituído de vários agentes inteligentes que atuam de forma concorrente e comunicam-se através de mensagens. Dessa maneira, transformam o sistema em um conjunto de agentes cooperantes em busca de um objetivo que é o de ensinar e/ou aprender. Este trabalho tem como objetivo utilizar o estudo e a abordagem de modelagem do sistema de ensino/aprendizagem definido por D’Amico no que se refere ao agente ferramentas para o professor. Propõe-se a desenvolver uma ferramenta que irá auxiliar o professor na distribuição de seus conhecimentos na Internet, armazenando as informações inseridas pelo professor bem como fornecer orientações a respeito de determinadas operações que o sistema realiza. Estas orientações também apresentam como foco os seguintes fatores: descrição da importância da motivação e interatividade num curso a distância, sugestões de metodologias de ensino que o professor pode usar nas suas aulas, orientações a respeito de avaliação do aprendizado do aluno, dicas sobre conteúdos de materiais complementares às aulas e por fim, menciona exemplos de ferramentas em modo texto e multimídia que podem ser utilizadas para comunicação.
Resumo:
Este trabalho situa-se na área de Sistemas Multiagente, que é uma sub-área da Inteligência Artificial Distribuída. Em particular, o problema abordado nesta dissertação é o da modelagem de ambientes, um aspecto importante na criação de simulações baseadas em sociedades de agentes cognitivos, no entanto pouco tratado na literatura da área. A principal contribuição deste trabalho é a concepção de uma linguagem, chamada ELMS, própria para a definição de ambientes multiagente, e a implementação de um protótipo de interpretador para esta linguagem. O resultado da interpretação é um processo que simula o ambiente descrito em alto nível, e é apropriado para a interação com os agentes cognitivos que irão compartilhar o ambiente. Esta linguagem foi desenvolvida no contexto do projeto MASSOC, que tem como objetivo a criação de simulações sociais com agentes cognitivos. A abordagem deste projeto dá ênfase ao uso da arquitetura BDI para agentes cognitivos, a comunicação inter-agente de alto nível (ou seja, baseada em atos de fala) e a modelagem de ambientes com a linguagem ELMS, que é proposta neste trabalho. Os ambientes e agentes que podem ser usados na criação de simulaçõpes, bem como a comunicação entre eles utilizando a ferramenta SACI, são definidos ou gerenciados a partir de uma interface gráfica, que facilita a criação e controle de simulações com a plataforma MASSOC. Além de apresentar a linguagem ELMS e seu interpretador, esta dissertação menciona ainda, como breve estudo de caso, uma simulação de aspectos sociais do crescimento urbano. Esta simulação social auxiliou na concepção e avaliação da linguagem ELMS.
Resumo:
Este trabalho apresenta e discute uma estratégia e discute uma estratégia inédita para o problema de exploração e mapeamento de ambientes desconhecidos usandoo robô NOMAD 200. Esta estratégia tem como base a solução numéricqa de problemas de valores de contorno (PVC) e corresponde ao núcleo da arquitetura de controle do robô. Esta arquitetura é similar à arquitetura blackboard, comumente conhecida no campo da Inteligência Artificial, e é responsável pelo controle e gerenciamento das tarefas realizadas pelo robô através de um programa cleinte. Estas tarefas podem ser a exploração e o mapeamento de um ambiente desconhecido, o planejamento de caminhos baseado em um mapa previamente conhecido ou localização de um objeto no ambiente. Uma características marcante e importante é que embora estas tarefas pareçam diferentes, elas têm em comum o mesmo princípio: solução de problemas de valores de contorno. Para dar sustentabilidade a nossa proposta, a validamos através de inúmeros experimentos, realizados e simulação e diretamente no robô NOMAD 200, em diversos tipos de ambientes internos. Os ambientes testados variam desde labirintos formados por paredes ortogonais entre si até ambientes esparsos. Juntamente com isso, introduzimos ao longo do desenvolvimento desta tese uma série de melhorias que lidam com aspectos relacionados ao tempo de processamento do campo potencial oriundo do PVC e os ruídos inseridos na leitura dos sensores. Além disso, apresentamos um conjunto de idéias para trabalhos futuros.
Resumo:
Modelos BDI (ou seja, modelos Beliefs-Desires-Intentions models) de agentes têm sido utilizados já há algum tempo. O objetivo destes modelos é permitir a caracterização de agentes utilizando noções antropomórficas, tais como estados mentais e ações. Usualmente, estas noções e suas propriedades são formalmente definidas utilizandos formalismos lógicos que permitem aos teóricos analisar, especificar e verificar agentes racionais. No entanto, apesar de diversos sistemas já terem sido desenvolvidos baseados nestes modelos, é geralmente aceito que existe uma distância significativa entre esta lógicas BDI poderosas e sistemas reais. Este trabalho defende que a principal razão para a existência desta distância é que os formalismos lógicos utilizados para definir os modelos de agentes não possuem uma semântica operacional que os suporte. Por “semântica operacional” entende-se tanto procedimentos de prova que sejam corretos e completos em relação à semântica da lógica, bem como mecanismos que realizem os diferentes tipos de raciocínio necessários para se modelar agentes. Há, pelo menos, duas abordagens que podem ser utilizadas para superar esta limitação dos modelos BDI. Uma é estender as lógicas BDI existentes com a semântica operacional apropriada de maneira que as teorias de agentes se tornem computacionais. Isto pode ser alcançado através da definição daqueles procedimentos de prova para as lógicas usadas na definição dos estados mentais. A outra abordagem é definir os modelos BDI utilizando formalismos lógicos apropriados que sejam, ao mesmo tempo, suficientemente poderosos para representar estados mentais e que possuam procedimentos operacionais que permitam a utilizaçao da lógica como um formalismo para representação do conhecimento, ao se construir os agentes. Esta é a abordagem seguida neste trabalho. Assim, o propósito deste trabalho é apresentar um modelo BDI que, além de ser um modelo formal de agente, seja também adequado para ser utilizado para implementar agentes. Ao invés de definir um novo formalismo lógico, ou de estender um formalismo existente com uma semântica operacional, define-se as noções de crenças, desejos e intenções utilizando um formalismo lógico que seja, ao mesmo tempo, formalmente bem-definido e computacional. O formalismo escolhido é a Programação em Lógica Estendida com Negação Explícita (ELP) com a semântica dada pelaWFSX (Well-Founded Semantics with Explicit Negation - Semântica Bem-Fundada com Negação Explícita). ELP com a WFSX (referida apenas por ELP daqui para frente) estende programas em lógica ditos normais com uma segunda negação, a negação explícita1. Esta extensão permite que informação negativa seja explicitamente representada (como uma crença que uma propriedade P não se verifica, que uma intenção I não deva se verificar) e aumenta a expressividade da linguagem. No entanto, quando se introduz informação negativa, pode ser necessário ter que se lidar com programas contraditórios. A ELP, além de fornecer os procedimentos de prova necessários para as teorias expressas na sua linguagem, também fornece um mecanismo para determinar como alterar minimamente o programa em lógica de forma a remover as possíveis contradições. O modelo aqui proposto se beneficia destas características fornecidas pelo formalismo lógico. Como é usual neste tipo de contexto, este trabalho foca na definição formal dos estados mentais em como o agente se comporta, dados tais estados mentais. Mas, constrastando com as abordagens até hoje utilizadas, o modelo apresentanto não é apenas uma especificação de agente, mas pode tanto ser executado de forma a verificar o comportamento de um agente real, como ser utilizado como mecanismo de raciocínio pelo agente durante sua execução. Para construir este modelo, parte-se da análise tradicional realizada na psicologia de senso comum, onde além de crenças e desejos, intenções também é considerada como um estado mental fundamental. Assim, inicialmente define-se estes três estados mentais e as relações estáticas entre eles, notadamente restrições sobre a consistência entre estes estados mentais. Em seguida, parte-se para a definição de aspectos dinâmicos dos estados mentais, especificamente como um agente escolhe estas intenções, e quando e como ele revisa estas intenções. Em resumo, o modelo resultante possui duas características fundamentais:(1) ele pode ser usado como um ambiente para a especificação de agentes, onde é possível definir formalmente agentes utilizando estados mentais, definir formalmente propriedades para os agentes e verificar se estas propriedades são satifeitas pelos agentes; e (2) também como ambientes para implementar agentes.
Resumo:
Este trabalho é um estudo sobre agentes inteligentes e suas aplicações na Internet. São apresentados e comparados alguns exemplos de software com funcionalidades para extrair, selecionar e auxiliar no consumo de informações da Internet, com base no perfil de interesse de cada usuário. O objetivo principal deste trabalho é a proposição de um modelo geral e amplo de agente para a obtenção e manutenção de um repositório de links para documentos que satisfaçam o interesse de um ou mais usuários. O modelo proposto baseia-se na obtenção do perfil do usuário a partir de documentos indicados como modelos positivos ou negativos. O ponto forte do modelo são os módulos responsáveis pela extração de informações da Internet, seleção quanto a importância e armazenamento em banco de dados das URLs obtidas, classificadas quanto a usuário, categoria de assunto e assunto. Além disso, o modelo prevê a realização de freqüentes verificações de integridade e pertinência dos links armazenados no repositório. Com base no modelo proposto foi implementado um protótipo parcial. Tal protótipo contempla os módulos responsáveis pela obtenção de informações, seleção das informações pertinentes e classificação e armazenamento dos links de acordo com o assunto. Finalmente, o protótipo implementado permaneceu em execução por um determinado período, gerando alguns resultados preliminares que viabilizaram uma avaliação do modelo.
Resumo:
Este trabalho apresenta o Modelo Fisiológico de Emoções. Este modelo trata a inteligência através de um ponto de vista biológico. O comportamento de cada componente é avaliado de forma independente e evitando abstrações que não estão de acordo com o funcionamento do corpo. O Modelo Fisiológico de Emoções contém um organismo simplificado incluindo apenas um restrito grupo de órgãos e tecidos constantemente gerando diferentes estímulos a agindo como geradores de intenção. O modelo também difere de abordagens cognitivas e considera um restrito grupo de estados emocionais com manifestações fisiológicas diferentes influenciando a tomada de decisão. O pequeno grupo de órgãos pode produzir diferentes estados fisiológicos quando o organismo está comendo, correndo ou mostrando algum estado emocional específico. O trabalho ainda mostra a implementação de um agente construído com base no modelo.
Resumo:
Técnicas de inteligência artificial, aplicadas a dados de transações de empréstimo do acervo de uma biblioteca, podem gerar recomendações de itens relevantes para usuários e pesquisadores. O sistema sugerido neste relatório é baseado em procedimentos de consolidação e conexão de registros em um data mart, associados às técnicas de análise de cestas, análise de agrupamentos e análise de redes, numa estratégia de cooperação indireta. No modelo aqui proposto, os itens da biblioteca são consolidados em assuntos significativos e grupos temáticos. Os usuários, por outro lado, são separados por grupos temáticos e segmentados segundo seu perfil de leitura. Por meio de consolidação são criadas listas para cada subgrupo especializado obtido, contendo recomendações específicas, temáticas e gerais. Sugere-se a utilização de transações virtuais para aperfeiçoar as recomendações. Além de servir a bibliotecas, o modelo proposto tem aplicabilidade direta em livrarias virtuais e pode ser adaptado para praticamente qualquer tipo de empreendimento em e-business.
Resumo:
Em ambientes dinâmicos e complexos, a política ótima de coordenação não pode ser derivada analiticamente, mas, deve ser aprendida através da interação direta com o ambiente. Geralmente, utiliza-se aprendizado por reforço para prover coordenação em tais ambientes. Atualmente, neuro-evolução é um dos métodos de aprendizado por reforço mais proeminentes. Em vista disto, neste trabalho, é proposto um modelo de coordenação baseado em neuro-evolução. Mais detalhadamente, desenvolveu-se uma extensão do método neuro-evolutivo conhecido como Enforced Subpopulations (ESP). Na extensão desenvolvida, a rede neural que define o comportamento de cada agente é totalmente conectada. Adicionalmente, é permitido que o algoritmo encontre, em tempo de treinamento, a quantidade de neurônios que deve estar presente na camada oculta da rede neural de cada agente. Esta alteração, além de oferecer flexibilidade na definição da topologia da rede de cada agente e diminuir o tempo necessário para treinamento, permite também a constituição de grupos de agentes heterogêneos. Um ambiente de simulação foi desenvolvido e uma série de experimentos realizados com o objetivo de avaliar o modelo proposto e identificar quais os melhores valores para os diversos parâmetros do modelo. O modelo proposto foi aplicado no domínio das tarefas de perseguição-evasão.
Resumo:
The Rational Agent model have been a foundational basis for theoretical models such as Economics, Management Science, Artificial Intelligence and Game Theory, mainly by the ¿maximization under constraints¿ principle, e.g. the ¿Expected Utility Models¿, among them, the Subjective Expected Utility (SEU) Theory, from Savage, placed as most influence player over theoretical models we¿ve seen nowadays, even though many other developments have been done, indeed also in non-expected utility theories field. Having the ¿full rationality¿ assumption, going for a less idealistic sight ¿bounded rationality¿ of Simon, or for classical anomalies studies, such as the ¿heuristics and bias¿ analysis by Kahneman e Tversky, ¿Prospect Theory¿ also by Kahneman & Tversky, or Thaler¿s Anomalies, and many others, what we can see now is that Rational Agent Model is a ¿Management by Exceptions¿ example, as for each new anomalies¿s presentation, in sequence, a ¿problem solving¿ development is needed. This work is a theoretical essay, which tries to understand: 1) The rational model as a ¿set of exceptions¿; 2) The actual situation unfeasibility, since once an anomalie is identified, we need it¿s specific solution developed, and since the number of anomalies increases every year, making strongly difficult to manage rational model; 3) That behaviors judged as ¿irrationals¿ or deviated, by the Rational Model, are truly not; 4) That¿s the right moment to emerge a Theory including mental processes used in decision making; and 5) The presentation of an alternative model, based on some cognitive and experimental psychology analysis, such as conscious and uncounscious processes, cognition, intuition, analogy-making, abstract roles, and others. Finally, we present conclusions and future research, that claims for deeper studies in this work¿s themes, for mathematical modelling, and studies about a rational analysis and cognitive models possible integration. .
Resumo:
Improvisação tem sido considerada uma característica importante para agentes que pretendem operar de maneira consistente com a situação do momento, exibindo um comportamento credível e interessante. A improvisação deve estar presente tanto nos agentes individuais quanto nas sociedades de agentes. Desta maneira, esta tese irá abordar estes dois aspectos da improvisação. Propomos a visão de que, agentes capazes de realizar improvisação, os agentes improvisacionais, são um tipo de agente deliberativo capaz de solucionar problemas por improvisação. Neste sentido, buscamos identificar dentro de uma arquitetura clássica de agentes deliberativos, a arquitetura BDI (belief-desire-intention), a existência e/ou a possibilidade da inclusão de componentes de improvisação nesta arquitetura. Para resolver problemas complexos, estes agentes precisam estar agrupados em sociedades e estas sociedades, por sua vez, precisam produzir comportamentos coerentes. A coordenação é a área da Inteligência Artificial responsável por este objetivo. Propomos que a coordenação de agentes que improvisam pode ser realizada por meio de um processo de direção improvisacional, no sentido usado no contexto do teatro improvisacional. Ao longo deste documento, iremos mostrar nosso entendimento sobre agentes improvisacionais como agentes deliberativos e coordenação como direção improvisacional. Com isto, defende-se nesta tese que o uso da improvisação em agentes improvisacionais possibilita que os agentes improvisem comportamentos interativos, de maneira coerente, melhorando seu desempenho como solucionadores de problemas, criando e mantendo uma ilusão de vida para os agentes interativos e contribuindo para o aperfeiçoamento dos sistemas multiagentes.
Resumo:
Por várias décadas os computadores têm sido utilizados no processo educacional e nem sempre da forma correta. E existe uma forma correta? Não existe consenso, são muitas as tentativas e experiências com inúmeros resultados positivos e negativos. Sabe-se de antemão que um dos fatores que levam ao fracasso alguns ensaios é a mera transposição do material didático tradicional para o meio informatizado, sem alterações na metodologia nem na postura do professor e do aluno. A questão é como a tecnologia pode ser utilizada para favorecer uma Aprendizagem Significativa. Para possibilitar esta pesquisa foi desenvolvido o Laboratório Virtual ASTERIX, utilizado na disciplina de Redes de Computadores do Curso de Ciências da Computação/UFSM. Esse trabalho apresenta os resultados da utilização do laboratório virtual ASTERIX, a metodologia de utilização dos recursos tecnológicos envolvidos (realidade virtual, inteligência artificial e animações/simulações) e avaliação da utilização desse laboratório virtual. A teoria educacional que fundamentou a criação e a utilização do laboratório virtual foi a Aprendizagem Significativa de D. Ausubel e D. Jonassen.