990 resultados para Hysteresis control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the direct adaptive inverse control of nonlinear multivariable systems with different delays between every input-output pair. In direct adaptive inverse control, the inverse mapping is learned from examples of input-output pairs. This makes the obtained controller sub optimal, since the network may have to learn the response of the plant over a larger operational range than necessary. Moreover, in certain applications, the control problem can be redundant, implying that the inverse problem is ill posed. In this paper we propose a new algorithm which allows estimating and exploiting uncertainty in nonlinear multivariable control systems. This approach allows us to model strongly non-Gaussian distribution of control signals as well as processes with hysteresis. The proposed algorithm circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Open-loop operatlon of the stepping motor exploits the inherent advantages of the machine. For near optimum operation: in this mode, however, an accurate system model is required to facilitate controller design. Such a model must be comprehensive and take account of the non-linearities inherent in the system. The result is a complex formulation which can be made manageable with a computational aid. A digital simulation of a hybrid type stepping motor and its associated drive circuit is proposed. The simulation is based upon a block diagram model which includes reasonable approximations to the major non-linearities. The simulation is shown to yield accurate performance predictions. The determination of the transfer functions is based upon the consideration of the physical processes involved rather than upon direct input-outout measurements. The effects of eddy currents, saturation, hysteresis, drive circuit characteristics and non-linear torque displacement characteristics are considered and methods of determining transfer functions, which take account of these effects, are offered. The static torque displacement characteristic is considered in detail and a model is proposed which predicts static torque for any combination of phase currents and shaft position. Methods of predicting the characteristic directly from machine geometry are investigated. Drive circuit design for high efficiency operation is considered and a model of a bipolar, bilevel circuit is proposed. The transfers between stator voltage and stator current and between stator current and air gap flux are complicated by the effects of eddy currents, saturation and hysteresis. Frequency response methods, combined with average inductance measurements, are shown to yield reasonable transfer functions. The modelling procedure and subsequent digital simulation is concluded to be a powerful method of non-linear analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomic innervation of ciliary smooth muscle is mediated principally by the parasympathetic nervous system and is supplemented by the sympathetic nervous system. Previous drug and nerve stimulation experiments on humans and animals have demonstrated that sympathetic innervation is inhibitory (via β-2 adrenoceptors), relatively small, slow and augmented by concurrent levels of background parasympathetic activity. These characteristics are pertinent to the sympathetic system having a specific role in our ability to adapt successfully to sustained near vision tasks and, given the clear association between near vision and the onset and development of myopia, to a putative aetiological role in myopia development in pre-disposed individuals. A fifth characteristic, namely the variation between individuals in access to an inhibitory sympathetic facility is therefore of particular interest. A novel method for continuous recording of accommodation, currently employed in a large sample longitudinal study of myopia in young adults, was used following topical instillation of non-selective (timolol) and selective (betaxolol) sympathetic β-adrenoceptor antagonists. Measures of post-task accommodative hysteresis were taken with reference to the time-course of regression of accommodation when open-loop (Difference of Gaussian) conditions were immediately imposed following short (10 s) and long (3 min) duration far (0D) and near (3D above tonic level) tasks viewed through a Badal system. Data confirm earlier informal experimental observations that only one in three individuals are likely to have access to a sympathetic inhibitory facility during sustained near vision. © 2002 The College of Optometrists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a new framework has been applied to the design of controllers which encompasses nonlinearity, hysteresis and arbitrary density functions of forward models and inverse controllers. Using mixture density networks, the probabilistic models of both the forward and inverse dynamics are estimated such that they are dependent on the state and the control input. The optimal control strategy is then derived which minimizes uncertainty of the closed loop system. In the absence of reliable plant models, the proposed control algorithm incorporates uncertainties in model parameters, observations, and latent processes. The local stability of the closed loop system has been established. The efficacy of the control algorithm is demonstrated on two nonlinear stochastic control examples with additive and multiplicative noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.