949 resultados para Hyperbolic conservation laws
Resumo:
We study the effects of strict conservation laws and the problem of negative contributions to final momentum distribution during the freeze-out through 3-dimensional hypersurfaces with spacelike normal. We study some suggested solutions for this problem, and demonstrate it in one example.
Resumo:
A generic prediction of inflation is that the thermalized region we inhabit is spatially infinite. Thus, it contains an infinite number of regions of the same size as our observable universe, which we shall denote as O regions. We argue that the number of possible histories which may take place inside of an O region, from the time of recombination up to the present time, is finite. Hence, there are an infinite number of O regions with identical histories up to the present, but which need not be identical in the future. Moreover, all histories which are not forbidden by conservation laws will occur in a finite fraction of all O regions. The ensemble of O regions is reminiscent of the ensemble of universes in the many-world picture of quantum mechanics. An important difference, however, is that other O regions are unquestionably real.
Resumo:
We continue our study of classical mechanics using the methods of quantum mechanics. A Hilbert space is introduced, new conservation laws deduced, and the possibility of representing by new methods the many body classical problem discussed.
Resumo:
Using an interpolant form for the gradient of a function of position, we write an integral version of the conservation equations for a fluid. In the appropriate limit, these become the usual conservation laws of mass, momentum, and energy. We also discuss the special cases of the Navier-Stokes equations for viscous flow and the Fourier law for thermal conduction in the presence of hydrodynamic fluctuations. By means of a discretization procedure, we show how the integral equations can give rise to the so-called particle dynamics of smoothed particle hydrodynamics and dissipative particle dynamics.
Resumo:
Observational and theoretical studies point to microquasars (MQs) as possible counterparts of a significant fraction of the unidentified gamma-ray sources detected so far. At present, a proper scenario to explain the emission beyond soft X-rays from these objects is not known, nor what the precise connection is between the radio and the high-energy radiation. We develop a new model where the MQ jet is dynamically dominated by cold protons and radiatively dominated by relativistic leptons. The matter content and power of the jet are both related with the accretion process. The magnetic field is assumed to be close to equipartition, although it is attached to and dominated by the jet matter. For the relativistic particles in the jet, their maximum energy depends on both the acceleration efficiency and the energy losses. The model takes into account the interaction of the relativistic jet particles with the magnetic field and all the photon and matter fields. Such interaction produces significant amounts of radiation from radio to very high energies through synchrotron, relativistic Bremsstrahlung, and inverse Compton (IC) processes. Variability of the emission produced by changes in the accretion process (e.g. via orbital eccentricity) is also expected. The effects of the gamma-ray absorption by the external photon fields on the gamma-ray spectrum have been taken into account, revealing clear spectral features that might be observed. This model is consistent to the accretion scenario, energy conservation laws, and current observational knowledge, and can provide deeper physical information of the source when tested against multiwavelength data.
Resumo:
Symmetry group methods are applied to obtain all explicit group-invariant radial solutions to a class of semilinear Schr¨odinger equations in dimensions n = 1. Both focusing and defocusing cases of a power nonlinearity are considered, including the special case of the pseudo-conformal power p = 4/n relevant for critical dynamics. The methods involve, first, reduction of the Schr¨odinger equations to group-invariant semilinear complex 2nd order ordinary differential equations (ODEs) with respect to an optimal set of one-dimensional point symmetry groups, and second, use of inherited symmetries, hidden symmetries, and conditional symmetries to solve each ODE by quadratures. Through Noether’s theorem, all conservation laws arising from these point symmetry groups are listed. Some group-invariant solutions are found to exist for values of n other than just positive integers, and in such cases an alternative two-dimensional form of the Schr¨odinger equations involving an extra modulation term with a parameter m = 2−n = 0 is discussed.
Resumo:
In this thesis we are studying possible invariants in hydrodynamics and hydromagnetics. The concept of flux preservation and line preservation of vector fields, especially vorticity vector fields, have been studied from the very beginning of the study of fluid mechanics by Helmholtz and others. In ideal magnetohydrodynamic flows the magnetic fields satisfy the same conservation laws as that of vorticity field in ideal hydrodynamic flows. Apart from these there are many other fields also in ideal hydrodynamic and magnetohydrodynamic flows which preserves flux across a surface or whose vector lines are preserved. A general study using this analogy had not been made for a long time. Moreover there are other physical quantities which are also invariant under the flow, such as Ertel invariant. Using the calculus of differential forms Tur and Yanovsky classified the possible invariants in hydrodynamics. This mathematical abstraction of physical quantities to topological objects is needed for an elegant and complete analysis of invariants.Many authors used a four dimensional space-time manifold for analysing fluid flows. We have also used such a space-time manifold in obtaining invariants in the usual three dimensional flows.In chapter one we have discussed the invariants related to vorticity field using vorticity field two form w2 in E4. Corresponding to the invariance of four form w2 ^ w2 we have got the invariance of the quantity E. w. We have shown that in an isentropic flow this quantity is an invariant over an arbitrary volume.In chapter three we have extended this method to any divergence-free frozen-in field. In a four dimensional space-time manifold we have defined a closed differential two form and its potential one from corresponding to such a frozen-in field. Using this potential one form w1 , it is possible to define the forms dw1 , w1 ^ dw1 and dw1 ^ dw1 . Corresponding to the invariance of the four form we have got an additional invariant in the usual hydrodynamic flows, which can not be obtained by considering three dimensional space.In chapter four we have classified the possible integral invariants associated with the physical quantities which can be expressed using one form or two form in a three dimensional flow. After deriving some general results which hold for an arbitrary dimensional manifold we have illustrated them in the context of flows in three dimensional Euclidean space JR3. If the Lie derivative of a differential p-form w is not vanishing,then the surface integral of w over all p-surfaces need not be constant of flow. Even then there exist some special p-surfaces over which the integral is a constant of motion, if the Lie derivative of w satisfies certain conditions. Such surfaces can be utilised for investigating the qualitative properties of a flow in the absence of invariance over all p-surfaces. We have also discussed the conditions for line preservation and surface preservation of vector fields. We see that the surface preservation need not imply the line preservation. We have given some examples which illustrate the above results. The study given in this thesis is a continuation of that started by Vedan et.el. As mentioned earlier, they have used a four dimensional space-time manifold to obtain invariants of flow from variational formulation and application of Noether's theorem. This was from the point of view of hydrodynamic stability studies using Arnold's method. The use of a four dimensional manifold has great significance in the study of knots and links. In the context of hydrodynamics, helicity is a measure of knottedness of vortex lines. We are interested in the use of differential forms in E4 in the study of vortex knots and links. The knowledge of surface invariants given in chapter 4 may also be utilised for the analysis of vortex and magnetic reconnections.
Resumo:
In [4], Guillard and Viozat propose a finite volume method for the simulation of inviscid steady as well as unsteady flows at low Mach numbers, based on a preconditioning technique. The scheme satisfies the results of a single scale asymptotic analysis in a discrete sense and comprises the advantage that this can be derived by a slight modification of the dissipation term within the numerical flux function. Unfortunately, it can be observed by numerical experiments that the preconditioned approach combined with an explicit time integration scheme turns out to be unstable if the time step Dt does not satisfy the requirement to be O(M2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Dt=O(M), M to 0, which results from the well-known CFL-condition. We present a comprehensive mathematical substantiation of this numerical phenomenon by means of a von Neumann stability analysis, which reveals that in contrast to the standard approach, the dissipation matrix of the preconditioned numerical flux function possesses an eigenvalue growing like M-2 as M tends to zero, thus causing the diminishment of the stability region of the explicit scheme. Thereby, we present statements for both the standard preconditioner used by Guillard and Viozat [4] and the more general one due to Turkel [21]. The theoretical results are after wards confirmed by numerical experiments.
Resumo:
This article is concerned with the numerical simulation of flows at low Mach numbers which are subject to the gravitational force and strong heat sources. As a specific example for such flows, a fire event in a car tunnel will be considered in detail. The low Mach flow is treated with a preconditioning technique allowing the computation of unsteady flows, while the source terms for gravitation and heat are incorporated via operator splitting. It is shown that a first order discretization in space is not able to compute the buoyancy forces properly on reasonable grids. The feasibility of the method is demonstrated on several test cases.
Resumo:
This work is concerned with finite volume methods for flows at low mach numbers which are under buoyancy and heat sources. As a particular application, fires in car tunnels will be considered. To extend the scheme for compressible flow into the low Mach number regime, a preconditioning technique is used and a stability result on this is proven. The source terms for gravity and heat are incorporated using operator splitting and the resulting method is analyzed.
Resumo:
The discontinuities in the solutions of systems of conservation laws are widely considered as one of the difficulties in numerical simulation. A numerical method is proposed for solving these partial differential equations with discontinuities in the solution. The method is able to track these sharp discontinuities or interfaces while still fully maintain the conservation property. The motion of the front is obtained by solving a Riemann problem based on the state values at its both sides which are reconstructed by using weighted essentially non oscillatory (WENO) scheme. The propagation of the front is coupled with the evaluation of "dynamic" numerical fluxes. Some numerical tests in 1D and preliminary results in 2D are presented.
Resumo:
The formulation of four-dimensional variational data assimilation allows the incorporation of constraints into the cost function which need only be weakly satisfied. In this paper we investigate the value of imposing conservation properties as weak constraints. Using the example of the two-body problem of celestial mechanics we compare weak constraints based on conservation laws with a constraint on the background state.We show how the imposition of conservation-based weak constraints changes the nature of the gradient equation. Assimilation experiments demonstrate how this can add extra information to the assimilation process, even when the underlying numerical model is conserving.
Resumo:
We study ordinary nonlinear singular differential equations which arise from steady conservation laws with source terms. An example of steady conservation laws which leads to those scalar equations is the Saint–Venant equations. The numerical solution of these scalar equations is sought by using the ideas of upwinding and discretisation of source terms. Both the Engquist–Osher scheme and the Roe scheme are used with different strategies for discretising the source terms.
Resumo:
We present a finite difference scheme, with the TVD (total variation diminishing) property, for scalar conservation laws. The scheme applies to non-uniform meshes, allowing for variable mesh spacing, and is without upstream weighting. When applied to systems of conservation laws, no scalar decomposition is required, nor are any artificial tuning parameters, and this leads to an efficient, robust algorithm.
Resumo:
A theoretical framework for the joint conservation of energy and momentum in the parameterization of subgrid-scale processes in climate models is presented. The framework couples a hydrostatic resolved (planetary scale) flow to a nonhydrostatic subgrid-scale (mesoscale) flow. The temporal and horizontal spatial scale separation between the planetary scale and mesoscale is imposed using multiple-scale asymptotics. Energy and momentum are exchanged through subgrid-scale flux convergences of heat, pressure, and momentum. The generation and dissipation of subgrid-scale energy and momentum is understood using wave-activity conservation laws that are derived by exploiting the (mesoscale) temporal and horizontal spatial homogeneities in the planetary-scale flow. The relations between these conservation laws and the planetary-scale dynamics represent generalized nonacceleration theorems. A derived relationship between the wave-activity fluxes-which represents a generalization of the second Eliassen-Palm theorem-is key to ensuring consistency between energy and momentum conservation. The framework includes a consistent formulation of heating and entropy production due to kinetic energy dissipation.