989 resultados para Huntington`s disease
Resumo:
This report presents and discusses selected findings regarding gender differences from an Australian-based study that investigated attitudes of individuals at risk for Huntington's disease (HD) towards genetic risk and predictive testing. Clear gender differences emerged regarding perceived coping capacity with regard to predictive testing, as well as disclosure of the genetic risk for HD to others. Female participants were more likely to disclose their genetic risk to others, including their medical practitioners, while male participants were three times more fearful of disclosing their genetic risk to others. These findings are of interest in light of gender differences that have consistently been reported regarding the uptake of predictive testing for HD, other genetic conditions, and health services more generally. While gender differences cannot provide a fully explanatory framework for differential uptake of predictive genetic testing, men and women may experience and respond differently to the genetic risk for HD and possibly other inherited disorders. The meanings of genetic risk to men and women warrants further exploration, given anticipated increases in genetic testing for more common conditions, especially if post-test interventions are possible. These issues are also relevant within the context of individuals' concerns about the potential for discrimination on the basis of genetic risk or genetic test information.
Resumo:
Predictive genetic testing for serious, mature-onset genetic illness represents a unique context in health decision making. This article presents findings from an exploratory qualitative Australian-based study into the decision making of individuals at risk for Huntington's disease (HD) with regard to predictive genetic testing. Sixteen in-depth interviews were conducted with a range of at-risk individuals. Data analysis revealed four discrete decision-making positions rather than a 'to test' or not to test' dichotomy. A conceptual dimension of (non-)openness and (non-)engagement characterized the various decisions. Processes of decision making and a concept of 'test readiness' were identified. Findings from this research, while not generalizable, are discussed in relation to theoretical frameworks and stage models of health decision making, as well as possible clinical implications.
Resumo:
The lexical-semantic and syntactic abilities of a group of individuals with chronic nonthalamic subcortical (NS) lesions following stroke (n = 6) were investigated using the Western Aphasia Battery (WAB) picture description task [Kertesz, A. (1982). The Western aphasia battery. New York: Grune and Stratton] and compared with those of a group of subjects with Huntington's Disease (HD) (n = 6) and a nonneurologically impaired control group (n = 6) matched for age, sex, and educational level. The performance of the NS and HD subjects did not differ significantly from the well controls on measures of lexical-semantic abilities. NS and HD subjects provided as much information about the target picture as control subjects, but produced fewer action information units. Analysis of syntactic abilities revealed that the HD subjects produced significantly more grammatical errors than both the NS and control subjects and that the NS group performed in a similar manner to control subjects. These findings are considered in terms of current theories of subcortical language function Learning outcomes: As a result of this activity, the reader will obtain information about the debate surrounding the role of subcortical language mechanisms and be provided with new information on the comparative picture description abilities of individuals with known vascular and degenerative subcortical pathologies and healthy control participants. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Huntington’s disease (HD) is an autosomal neurodegenerative disorder affecting approximately 5-10 persons per 100,000 worldwide. The pathophysiology of HD is not fully understood but the age of onset is known to be highly dependent on the number of CAG triplet repeats in the huntingtin gene. Using 1H NMR spectroscopy this study biochemically profiled 39 brain metabolites in post-mortem striatum (n=14) and frontal lobe (n=14) from HD sufferers and controls (n=28). Striatum metabolites were more perturbed with 15 significantly affected in HD cases, compared with only 4 in frontal lobe (P<0.05; q<0.3). The metabolite which changed most overall was urea which decreased 3.25-fold in striatum (P<0.01). Four metabolites were consistently affected in both brain regions. These included the neurotransmitter precursors tyrosine and L-phenylalanine which were significantly depleted by 1.55-1.58-fold and 1.48-1.54-fold in striatum and frontal lobe, respectively (P=0.02-0.03). They also included L-leucine which was reduced 1.54-1.69-fold (P=0.04-0.09) and myo-inositol which was increased 1.26-1.37-fold (P<0.01). Logistic regression analyses performed with MetaboAnalyst demonstrated that data obtained from striatum produced models which were profoundly more sensitive and specific than those produced from frontal lobe. The brain metabolite changes uncovered in this first 1H NMR investigation of human HD offer new insights into the disease pathophysiology. Further investigations of striatal metabolite disturbances are clearly warranted.
Resumo:
Background: Huntington disease ( HD) is characterized by the progressive death of medium spiny dopamine receptor bearing striatal GABAergic neurons. In addition, microglial activation in the areas of neuronal loss has recently been described in postmortem studies. Activated microglia are known to release neurotoxic cytokines, and these may contribute to the pathologic process. Methods: To evaluate in vivo the involvement of microglia activation in HD, the authors studied patients at different stages of the disease using [ C-11]( R)-PK11195 PET, a marker of microglia activation, and [ C-11] raclopride PET, a marker of dopamine D2 receptor binding and hence striatal GABAergic cell function. Results: In HD patients, a significant increase in striatal [ C-11]( R)-PK11195 binding was observed, which significantly correlated with disease severity as reflected by the striatal reduction in [ C-11] raclopride binding, the Unified Huntington's Disease Rating Scale score, and the patients' CAG index. Also detected were significant increases in microglia activation in cortical regions including prefrontal cortex and anterior cingulate. Conclusions: These [ C-11]( R)-PK11195 PET findings show that the level of microglial activation correlates with Huntington disease ( HD) severity. They lend support to the view that microglia contribute to the ongoing neuronal degeneration in HD and indicate that [ C-11]( R)-PK11195 PET provides a valuable marker when monitoring the efficacy of putative neuroprotecting agents in this relentlessly progressive genetic disorder.
Resumo:
Although Huntington's disease (HD) is a neurodegenerative disease characterized by motor, cognitive and behavioural disturbances, there has been little empirical data examining what patients are most concerned about throughout the different stages of disease, which can span many years. Semi-structured face-to-face interviews were individually conducted with 31 people living with different stages of Huntington's, from pre-clinical gene carriers to advanced stage. We examined how often participants raised issues and concerns regarding the impact of Huntington's on everyday life. The Physical/functional theme hardly featured pre-clinically, but was strongly present from Stage 1, rose steadily and peaked at Stage 5. There were no significant changes between stages for the Emotional, Social, and Self themes that all featured across all stages, indicating that these issues were not raised more frequently over the course of the disease. Likewise, the more rarely mentioned Financial and Legal themes also remained similar across stages. However, the Cognitive theme only featured between Stages 1 and 4, and hardly at all pre-clinically and at Stage 5. These findings provide insight into patients' important and unique perspective and have implications for the management and development of interventions across the spectrum of HD stages.
Resumo:
The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the "REGISTRY" cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis.
Resumo:
Background: The Unified Huntington’s Disease Rating Scale (UHDRS) is the principal means of assessing motor impairment in Huntington disease but is subjective and generally limited to in-clinic assessments. Objective: To evaluate the feasibility and ability of wearable sensors to measure motor impairment in individuals with Huntington disease in the clinic and at home. Methods: Participants with Huntington disease and controls were asked to wear five accelerometer-based sensors attached to the chest and each limb for standardized, in-clinic assessments and for one day at home. A secondchest sensor was worn for six additional days at home. Gait measures were compared between controls, participants with Huntington disease, and participants with Huntington disease grouped by UHDRS total motor score using Cohen’s d values. Results: Fifteen individuals with Huntington disease and five controls completed the study. Sensor data were successfully captured from 18 of the 20 participants at home. In the clinic, the standard deviation of step time (timebetween consecutive steps) was increased in Huntington disease (p<0.0001; Cohen’s d=2.61) compared to controls. At home with additional observations, significant differences were observed in seven additional gait measures. The gait of individuals with higher total motor scores (50 or more) differed significantly from those with lower total motor scores (below 50) on multiple measures at home. Conclusions: In this pilot study, the use of wearable sensors in clinic and at home was feasible and demonstrated gait differences between controls, participants with Huntington disease, and participants with Huntington diseasegrouped by motor impairment.
Resumo:
Huntington's disease (HD) is an incurable genetic neurodegenerative disorder that leads to motor and cognitive decline. It is caused by an expanded polyglutamine tract within the Huntingtin (HTT) gene, which translates into a toxic mutant HTT protein. Although no cure has yet been discovered, novel therapeutic strategies, such as RNA interference (RNAi), antisense oligonucleotides (ASO), ribozymes, DNA enzymes, and genome-editing approaches, aimed at silencing or repairing the mutant HTT gene hold great promise. Indeed, several preclinical studies have demonstrated the utility of such strategies to improve HD neuropathology and symptoms. In this review, we critically summarise the main advances and limitations of each gene-silencing technology as an effective therapeutic tool for the treatment of HD.
Resumo:
In Huntington's disease (HD), the expansion of polyglutamine (polyQ) repeats at the N terminus of the ubiquitous protein huntingtin (htt) leads to neurodegeneration in specific brain areas. Neurons degenerating in HD develop synaptic dysfunctions. However, it is unknown whether mutant htt impacts synaptic function in general. To investigate that, we have focused on the nerve terminals of motor neurons that typically do not degenerate in HD. Here, we have studied synaptic transmission at the neuromuscular junction of transgenic mice expressing a mutant form of htt (R6/1 mice). We have found that the size and frequency of miniature endplate potentials are similar in R6/1 and control mice. In contrast, the amplitude of evoked endplate potentials in R6/1 mice is increased compared to controls. Consistent with a presynaptic increase of release probability, synaptic depression under high-frequency stimulation is higher in R6/1 mice. In addition, no changes were detected in the size and dynamics of the recycling synaptic vesicle pool. Moreover, we have found increased amounts of the synaptic vesicle proteins synaptobrevin 1,2/VAMP 1,2 and cysteine string protein-α, and the SNARE protein SNAP-25, concomitant with normal levels of other synaptic vesicle markers. Our results reveal that the transgenic expression of a mutant form of htt leads to an unexpected gain of synaptic function. That phenotype is likely not secondary to neurodegeneration and might be due to a primary deregulation in synaptic protein levels. Our findings could be relevant to understand synaptic toxic effects of proteins with abnormal polyQ repeats.
Resumo:
PURPOSE: Huntington's disease is a rare condition. Patients are commonly treated with antipsychotics and tetrabenazine. The evidence of their effect on disease progression is limited and no comparative study between these drugs has been conducted. We therefore compared the effectiveness of antipsychotics on disease progression. METHODS: 956 patients from the Huntington French Speaking Group were followed for up to 8 years between 2002 and 2010. The effectiveness of treatments was assessed using Unified Huntington's Disease Rating Scale (UHDRS) scores and then compared using a mixed model adjusted on a multiple propensity score. RESULTS: 63% of patients were treated with antipsychotics during the survey period. The most commonly prescribed medications were dibenzodiazepines (38%), risperidone (13%), tetrabenazine (12%) and benzamides (12%). There was no difference between treatments on the motor and behavioural declines observed, after taking the patient profiles at the start of the drug prescription into account. In contrast, the functional decline was lower in the dibenzodiazepine group than the other antipsychotic groups (Total Functional Capacity: 0.41 ± 0.17 units per year vs. risperidone and 0.54 ± 0.19 vs. tetrabenazine, both p<0.05). Benzamides were less effective than other antipsychotics on cognitive evolution (Stroop interference, Stroop color and Literal fluency: p<0.05). CONCLUSIONS: Antipsychotics are widely used to treat patients with Huntington's disease. Although differences in motor or behavioural profiles between patients according to the antipsychotics used were small, there were differences in drug effectiveness on the evolution of functional and cognitive scores.
Resumo:
Astrocyte reactivity is a hallmark of neurodegenerative diseases (ND), but its effects on disease outcomes remain highly debated. Elucidation of the signaling cascades inducing reactivity in astrocytes during ND would help characterize the function of these cells and identify novel molecular targets to modulate disease progression. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is associated with reactive astrocytes in models of acute injury, but it is unknown whether this pathway is directly responsible for astrocyte reactivity in progressive pathological conditions such as ND. In this study, we examined whether the JAK/STAT3 pathway promotes astrocyte reactivity in several animal models of ND. The JAK/STAT3 pathway was activated in reactive astrocytes in two transgenic mouse models of Alzheimer's disease and in a mouse and a nonhuman primate lentiviral vector-based model of Huntington's disease (HD). To determine whether this cascade was instrumental for astrocyte reactivity, we used a lentiviral vector that specifically targets astrocytes in vivo to overexpress the endogenous inhibitor of the JAK/STAT3 pathway [suppressor of cytokine signaling 3 (SOCS3)]. SOCS3 significantly inhibited this pathway in astrocytes, prevented astrocyte reactivity, and decreased microglial activation in models of both diseases. Inhibition of the JAK/STAT3 pathway within reactive astrocytes also increased the number of huntingtin aggregates, a neuropathological hallmark of HD, but did not influence neuronal death. Our data demonstrate that the JAK/STAT3 pathway is a common mediator of astrocyte reactivity that is highly conserved between disease states, species, and brain regions. This universal signaling cascade represents a potent target to study the role of reactive astrocytes in ND.
Resumo:
Introdução: A Doença de Huntington (DH) é uma patologia neuro degenerativa hereditária de transmissão autossómica dominante que afeta o movimento e conduz a um défice progressivo das capacidades cognitivas e comportamentais. Cuidar um doente de Huntington é um processo complexo e exigente com um grande impacto na saúde, bem-estar e qualidade de vida do cuidador informal. Objetivo: Avaliar o impacto da DH na Qualidade de Vida do Cuidador Informal, e verificar em que medida as variáveis sociodemográficas, contextuais e clínicas se relacionam com essa Qualidade de Vida. Metodologia: Trata-se de um estudo quantitativo, não experimental, transversal numa lógica de análise descritivo-correlacional com 50 Cuidadores Informais de nacionalidade espanhola, membros da “Asociación de Corea de Huntington Española” - ACHE. Utilizamos a versão espanhola do questionário: Huntington’s Disease Quality of Life Battery for Carers (HDQoLC) como instrumento de colheita de dados especifico para a avaliação da QDV dos Cuidadores de Doentes de Huntington . Resultados: Os participantes são na sua maioria do sexo feminino (68%), com uma media de idades de 50,04 anos, casados (72%) com elevado grau de literacia (52%) e no ativo (72%). São essencialmente cônjuges da pessoa dependente (52%) ou filhos(as) (28%). Os resultados sugerem que os CI possuem uma QDV moderada (53%) na qual os “aspetos práticos do cuidar”, ou seja, o papel de cuidador, tem grande impacto na QDV (43%) a “satisfação com a vida e os “sentimentos sobre a vida com DH” parecem atenuar esta sobrecarga. Os dados obtidos revelam que as variáveis que influenciaram significativamente a Qualidade de Vida total são: as habilitações literárias e o número de horas de cuidados diários. No entanto podemos afirmar que a idade, tempo como CI e os motivos que levaram a assumir o papel de cuidador, tem uma relação expressiva com a dimensão “aspetos práticos do cuidar” da QDV. Conclusões: Os resultados reforçam a multidimensionalidade e variabilidade da qualidade de vida dos cuidadores informais de Doentes de Huntington e evidenciam a necessidade dos profissionais de saúde apostarem em programas de intervenção na comunidade, de forma a implementar estratégias de apoio que minimizem as dificuldades sentidas, aumentem a capacidade para a prestação de cuidados e que promovam a qualidade de vida dos que cuidam. Palavras-chave:; Doença de Huntington; Cuidadores Informais; Qualidade de Vida.
Resumo:
Alzheimer's disease (AD) is the most common form of dementia, accounting for 60-70% of cases in subjects over 65 years of age. Several postulates have been put forward that relate AD neuropathology to intellectual and functional impairment. These range from free-radical-induced damage, through cholinergic dysfunction, to beta-amyloid-induced toxicity. However, therapeutic strategies aimed at improving the cognitive symptoms of patients via choline supplementation, cholinergic stimulation or beta-amyloid vaccination, have largely failed. A growing body of evidence suggests that perturbations in systems using the excitatory amino acid L-glutamate (L-Glu) may underlie the pathogenic mechanisms of (e.g.) hypoxia-ischemia, epilepsy, and chronic neurodegenerative disorders such as Huntington's disease and AD. Almost all neurons in the CNS carry the N-methyl-D-aspartate (NMDA) subtype of ionotropic L-glutamate receptors, which can mediate post-synaptic Ca2+ influx. Excitotoxicity resulting from excessive activation of NMDA receptors may enhance the localized vulnerability of neurons in a manner consistent with AD neuropathology, as a consequence of an altered regional distribution of NMDA receptor subtypes. This review discusses mechanisms for the involvement of the NMDA receptor complex and its interaction with polyamines in the pathogenesis of AD. NMDA receptor antagonists have potential for the therapeutic amelioration of AD. (C) 2004 Elsevier Ltd. All rights reserved.