993 resultados para Holographic Optical Elements


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, there has been increasing fish consumption in Brazil, largely due to the popularity of Japanese cuisine. No study, however, has previously assessed the presence of inorganic contaminants in species used in the preparation of Japanese food. In this paper, we determined total arsenic, cadmium, chromium, total mercury, and lead contents in 82 fish samples of Tuna (Thunnus thynnus), Porgy (Pagrus pagrus), Snook (Centropomus sp.), and Salmon (Salmo salar) species marketed in Sao Paulo (Brazil). Samples were mineralized in HNO(3)/H(2)O(2) for As, Cd, Cr and Pb, and in HNO(3)/H(2)SO(4)/V(2)O(5) for Hg. Inorganic contaminants were determined after the validation of the methodology using Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES); and for Hg, an ICP-coupled hydride generator was used. Concentration ranges for elements analyzed in mg kg(-1) (wet base) were as follows: Total As (0.11-10.82); Cd (0.005-0.047); Cr (0.008-0.259); Pb (0.026-0.481); and total Hg (0.0077-0.9681). As and Cr levels exceeded the maximum limits allowed by the Brazilian law (1 and 0.1 mg kg(-1)) in 51.2 and 7.3% of the total samples studied, respectively. The most contaminated species were porgy (As = 95% and Cr = 10%) and tuna (As 91% and Cr = 10%). An estimation of As, Cd, Pb, and Hg weekly intake was calculated considering a 60 kg adult person and a 350 g consumption of fish per week, with As and Hg elements presenting the highest contribution on diets reaching 222% of provisional tolerable weekly intake (PTWI) for As in porgy and 41% of PTWI for Hg in tuna. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near-Resonant Holographic Interferometry is a powerful technique which extends the established advantages of conventional holographic interferometry by allowing a species-specific number density to be determined. It has been tested in the harsh flow conditions generated in a high enthalpy facility yielding information about the shock shape on a cylindrical body and on the distribution of a trace species seeded into the flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a proof of principle demonstration of an optically driven micromachine element. Optical angular momentum is transferred from a circularly polarized laser beam to a birefringent particle confined in an optical tweezers trap. The optical torque causes the particle to spin at up to 350 Hz, and this torque is harnessed to drive an optically trapped microfabricated structure. We describe a photolithographic method for producing the microstructures and show how a light driven motor could be used in a micromachine system. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vacuum, Vol. 64

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SiC optical processor for error detection and correction is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Data shows that the background act as selector that pick one or more states by splitting portions of the input multi optical signals across the front and back photodiodes. Boolean operations such as exclusive OR (EXOR) and three bit addition are demonstrated optically with a combination of such switching devices, showing that when one or all of the inputs are present the output will be amplified, the system will behave as an XOR gate representing the SUM. When two or three inputs are on, the system acts as AND gate indicating the present of the CARRY bit. Additional parity logic operations are performed by use of the four incoming pulsed communication channels that are transmitted and checked for errors together. As a simple example of this approach, we describe an all optical processor for error detection and correction and then, provide an experimental demonstration of this fault tolerant reversible system, in emerging nanotechnology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was carried out to evaluate the association of levels of radioactivity, selenium and aflatoxin in shelled Brazil nuts, which were classified in different sizes, for export. The selenium determinations were performed by inductively coupled plasma optical emission spectrometry (LOQ = 3.0 µg g-1), and aflatoxins were detected by Liquid chromatography-mass spectrometry (LOQ = 0.85 µg kg-1), recovery rates were between 92 and 100%. Radioactivity was measured by high-resolution gamma spectrometry. The selenium mean concentration was (22.7 ± 7.4) µg g-1. (n = 30). Mean activities determined for the following radium isotopes were: 15.77 Bq kg-1 for 224Ra, 104.8 Bq kg-1 for 226Ra and 99.48 Bq kg-1 for 228Ra. For 226Ra, the levels did not vary significantly with nut sizes, although such differences were observed for 224Ra and 228Ra. There was no statistically significant association between the level of selenium and the activity of radionuclides, however, there was correlation between the radionuclides. Aflatoxins above the quantification limit were not found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital holographic microscopy (DHM) allows optical-path-difference (OPD) measurements with nanometric accuracy. OPD induced by transparent cells depends on both the refractive index (RI) of cells and their morphology. This Letter presents a dual-wavelength DHM that allows us to separately measure both the RI and the cellular thickness by exploiting an enhanced dispersion of the perfusion medium achieved by the utilization of an extracellular dye. The two wavelengths are chosen in the vicinity of the absorption peak of the dye, where the absorption is accompanied by a significant variation of the RI as a function of the wavelength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the investigation of thin films of transition metal nitrides, an essential role is played by the accurate determination of their chemical composition. Actually the chemical composition depends on the deposition parameters and influences the optical properties. These relations are illustrated in thin films of TiNx and (Ti1-yVy)N-x deposited by reactive magnetron sputtering from composite targets of the elements. By variation of the nitrogen partial pressure and the target composition, different samples have been obtained. The chemical composition has been measured by electron probe microanalysis at low irradiation voltages. The optical properties are evaluated by ex-situ ellipsometry. Using the screened Drude model, they are correlated with the differences in composition. Adding vanadium or nitrogen in Ti-N is shown to have the same effect on the optical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital holographic microscopy (DHM) is a technique that allows obtaining, from a single recorded hologram, quantitative phase image of living cell with interferometric accuracy. Specifically the optical phase shift induced by the specimen on the transmitted wave front can be regarded as a powerful endogenous contrast agent, depending on both the thickness and the refractive index of the sample. Thanks to a decoupling procedure cell thickness and intracellular refractive index can be measured separately. Consequently, Mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC), two highly relevant clinical parameters, have been measured non-invasively at a single cell level. The DHM nanometric axial and microsecond temporal sensitivities have permitted to measure the red blood cell membrane fluctuations (CMF) on the whole cell surface. ©2009 COPYRIGHT SPIE--The International Society for Optical Engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital holography microscopy (DHM) is an optical microscopy technique which allows recording non-invasively the phase shift induced by living cells with nanometric sensitivity. Here, we exploit the phase signal as an indicator of dry mass (related to the protein concentration). This parameter allows monitoring the protein production rate and its evolution during the cell cycle. ©2008 COPYRIGHT SPIE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital holographic microscopy (DHM) is a noninvasive optical imaging technique that provides quantitative phase images of living cells. In a recent study, we showed that the quantitative monitoring of the phase signal by DHM was a simple label-free method to study the effects of glutamate on neuronal optical responses (Pavillon et al., 2010). Here, we refine these observations and show that glutamate produces the following three distinct optical responses in mouse primary cortical neurons in culture, predominantly mediated by NMDA receptors: biphasic, reversible decrease (RD) and irreversible decrease (ID) responses. The shape and amplitude of the optical signal were not associated with a particular cellular phenotype but reflected the physiopathological status of neurons linked to the degree of NMDA activity. Thus, the biphasic, RD, and ID responses indicated, respectively, a low-level, a high-level, and an "excitotoxic" level of NMDA activation. Moreover, furosemide and bumetanide, two inhibitors of sodium-coupled and/or potassium-coupled chloride movement strongly modified the phase shift, suggesting an involvement of two neuronal cotransporters, NKCC1 (Na-K-Cl) and KCC2 (K-Cl) in the genesis of the optical signal. This observation is of particular interest since it shows that DHM is the first imaging technique able to monitor dynamically and in situ the activity of these cotransporters during physiological and/or pathological neuronal conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT. A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This line of research of my group intends to establish a Silicon technological platform in the field of photonics allowing the development of a wide set of applications. Particularly, what is still lacking in Silicon Photonics is an efficient and integrable light source such an LED or laser. Nanocrystals in silicon oxide or nitride matrices have been recently demonstrated as competitive materials for both active components (electrically and optically driven light emitters and optical amplifiers) and passive ones (waveguides and modulators). The final goal is the achievement of a complete integration of electronic and optical functions in the same CMOS chip. The first part of this paper will introduce the structural and optical properties of LEDs fabricated from silicon nanostructures. The second will treat the interaction of such nanocrystals with rare-earth elements (Er), which lead to an efficient hybrid system emitting in the third window of optical fibers. I will present the fabrication and assessment of optical waveguide amplifiers at 1.54 ¿m for which we have been able to demonstrate recently optical gain in waveguides made from sputtered silicon suboxide materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al., Appl. Opt. 38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.