965 resultados para Hippocampal neurons
Resumo:
Theories of sequence learning based on temporally asymmetric, Hebbian long-term potentiation predict that during route learning the spatial firing distributions of hippocampal neurons should enlarge in a direction opposite to the animal’s movement. On a route AB, increased synaptic drive from cells representing A would cause cells representing B to fire earlier and more robustly. These effects appeared within a few laps in rats running on closed tracks. This provides indirect evidence for Hebbian synaptic plasticity and a functional explanation for why place cells become directionally selective during route following, namely, to preserve the synaptic asymmetry necessary to encode the sequence direction.
Resumo:
The HIV-1 envelope protein gp120 induces apoptosis in hippocampal neurons. Because chemokine receptors act as cellular receptors for HIV-1, we examined rat hippocampal neurons for the presence of functional chemokine receptors. Fura-2-based Ca imaging showed that numerous chemokines, including SDF-1α, RANTES, and fractalkine, affect neuronal Ca signaling, suggesting that hippocampal neurons possess a wide variety of chemokine receptors. Chemokines also blocked the frequency of spontaneous glutamatergic excitatory postsynaptic currents recorded from these neurons and reduced voltage-dependent Ca currents in the same neurons. Reverse transcription–PCR demonstrated the expression of CCR1, CCR4, CCR5, CCR9/10, CXCR2, CXCR4, and CX3CR1, as well as the chemokine fractalkine in these neurons. Both fractalkine and macrophage-derived chemokine (MDC) produced a time-dependent activation of extracellular response kinases (ERK)-1/2, whereas no activation of c-JUN NH2-terminal protein kinase (JNK)/stress-activated protein kinase, or p38 was evident. Furthermore, these two chemokines, as well as SDF-1α, activated the Ca- and cAMP-dependent transcription factor CREB. Several chemokines were able also to block gp120-induced apoptosis of hippocampal neurons, both in the presence and absence of the glial feeder layer. These data suggest that chemokine receptors may directly mediate gp120 neurotoxicity.
Resumo:
Hippocampal pyramidal neurons often fire in bursts of action potentials with short interspike intervals (2–10 msec). These high-frequency bursts may play a critical role in the functional behavior of hippocampal neurons, but synaptic plasticity at such short times has not been carefully studied. To study synaptic modulation at very short time intervals, we applied pairs of stimuli with interpulse intervals ranging from 7 to 50 msec to CA1 synapses isolated by the method of minimal stimulation in hippocampal slices. We have identified three components of short-term paired-pulse modulation, including (i) a form of synaptic depression manifested after a prior exocytotic event, (ii) a form of synaptic depression that does not depend on a prior exocytotic event and that we postulate is based on inactivation of presynaptic N-type Ca2+ channels, and (iii) a dependence of paired-pulse facilitation on the exocytotic history of the synapse.
Resumo:
Dendritic mRNA transport and local translation at individual potentiated synapses may represent an elegant way to form synaptic memory. Recently, we characterized Staufen, a double-stranded RNA-binding protein, in rat hippocampal neurons and showed its presence in large RNA-containing granules, which colocalize with microtubules in dendrites. In this paper, we transiently transfect hippocampal neurons with human Staufen-green fluorescent protein (GFP) and find fluorescent granules in the somatodendritic domain of these cells. Human Stau-GFP granules show the same cellular distribution and size and also contain RNA, as already shown for the endogenous Stau particles. In time-lapse videomicroscopy, we show the bidirectional movement of these Staufen-GFP–labeled granules from the cell body into dendrites and vice versa. The average speed of these particles was 6.4 μm/min with a maximum velocity of 24.3 μm/min. Moreover, we demonstrate that the observed assembly into granules and their subsequent dendritic movement is microtubule dependent. Taken together, we have characterized a novel, nonvesicular, microtubule-dependent transport pathway involving RNA-containing granules with Staufen as a core component. This is the first demonstration in living neurons of movement of an essential protein constituent of the mRNA transport machinery.
Resumo:
The heroin analogue 1-methyl-4-phenylpyridinium, MPP+, both in vitro and in vivo, produces death of dopaminergic substantia nigral cells by inhibiting the mitochondrial NADH dehydrogenase multienzyme complex, producing a syndrome indistinguishable from Parkinson's disease. Similarly, a fragment of amyloid protein, Aβ1–42, is lethal to hippocampal cells, producing recent memory deficits characteristic of Alzheimer's disease. Here we show that addition of 4 mM d-β-hydroxybutyrate protected cultured mesencephalic neurons from MPP+ toxicity and hippocampal neurons from Aβ1–42 toxicity. Our previous work in heart showed that ketone bodies, normal metabolites, can correct defects in mitochondrial energy generation. The ability of ketone bodies to protect neurons in culture suggests that defects in mitochondrial energy generation contribute to the pathophysiology of both brain diseases. These findings further suggest that ketone bodies may play a therapeutic role in these most common forms of human neurodegeneration.
Resumo:
Stress early in postnatal life may result in long-term memory deficits and selective loss of hippocampal neurons. The mechanisms involved are poorly understood, but they may involve molecules and processes in the immature limbic system that are activated by stressful challenges. We report that administration of corticotropin-releasing hormone (CRH), the key limbic stress modulator, to the brains of immature rats reproduced the consequences of early-life stress, reducing memory functions throughout life. These deficits were associated with progressive loss of hippocampal CA3 neurons and chronic up-regulation of hippocampal CRH expression. Importantly, they did not require the presence of stress levels of glucocorticoids. These findings indicate a critical role for CRH in the mechanisms underlying the long-term effects of early-life stress on hippocampal integrity and function.
Resumo:
Neurons in very low density hippocampal cultures that are physiologically identified as either GABAergic inhibitory or glutamatergic excitatory all contain mRNA for the gamma-aminobutyric acid (GABA) synthetic enzyme, glutamic acid decarboxylase (GAD), as detected by single cell mRNA amplification and PCR. However, consistent with the physiology, immunocytochemistry revealed that only a subset of the neurons stain for either GAD protein or GABA. A similar fraction hybridize with RNA probes for GAD65 and GAD67. Hippocampal CA1 pyramidal neurons in slice preparations, which are traditionally thought to be excitatory, also contain mRNA for GAD65 and GAD67. Hippocampal neurons in culture did not contain mRNA for two other neurotransmitter synthesizing enzymes, tyrosine hydroxylase, and choline acetyl transferase. These data suggest that in some neurons, presumably the excitatory neurons, GAD mRNA is selectively regulated at the level of translation. We propose that neurotransmitter phenotype may be posttranscriptionally regulated and neurons may exhibit transient phenotypic plasticity in response to environmental influences.
Resumo:
The survival of cultured mouse hippocampal neurons was found to be greatly enhanced by micromolar concentrations of the excitatory neurotransmitter glutamate. Blockade of kainate/AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) glutamate receptors increased the rate of neuron death, suggesting that endogenous glutamate in the cultures promotes survival. Addition of glutamate (0.5-1 microM) further increased neuron survival, whereas glutamate in excess of 20 microM resulted in increased death. Thus, the survival vs. glutamate dose-response relation is bell-shaped with an optimal glutamate concentration near 1 microM. We found that hippocampal neurons from mice with the genetic defect trisomy 16 (Ts16) died 2-3 times faster than normal (euploid) neurons. Moreover, glutamate, at all concentrations tested, failed to increase survival of Ts16 neurons. In contrast, the neurotrophic polypeptide basic fibroblast growth factor did increase the survival of Ts16 and euploid neurons. Ts16 is a naturally occurring mouse genetic abnormality, the human analog of which (Down syndrome) leads to altered brain development and Alzheimer disease. These results demonstrate that the Ts16 genotype confers a defect in the glutamate-mediated survival response of hippocampal neurons and that this defect can contribute to their accelerated death.
Resumo:
Numerous synaptic proteins, including several integral membrane proteins, have been assigned roles in synaptic vesicle fusion with or retrieval from the presynaptic plasma membrane. In contrast, the synapsins, neuron-specific phosphoproteins associated with the cytoplasmic surface of synaptic vesicles, appear to play a much broader role, being involved in the regulation of neurotransmitter release and in the organization of the nerve terminal. Here we have administered antisense synapsin II oligonucleotides to dissociated hippocampal neurons, either before the onset of synaptogenesis or 1 week after the onset of synaptogenesis. In both cases, synapsin II was no longer detectable within 24-48 h of treatment. After 5 days of treatment, cultures were analyzed for the presence of synapses by synapsin I and synaptophysin antibody labeling and by electron microscopy. Cultures in which synapsin II was suppressed after axon elongation, but before synapse formation, did not develop synapses. Cultures in which synapsin II was suppressed after the development of synapses lost most of their synapses. Remarkably, with the removal of the antisense oligonucleotides, neurons and their synaptic connections recovered. These studies lead us to conclude that synapsin II is involved in the formation and maintenance of synapses in hippocampal neurons.
Resumo:
In Alzheimer disease (AD) the amyloid beta-peptide (A beta) accumulates in plaques in the brain. A beta can be neurotoxic by a mechanism involving induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels ([Ca2+]i). In light of evidence for an inflammatory response in the brain in AD and reports of increased levels of tumor necrosis factor (TNF) in AD brain we tested the hypothesis that TNFs affect neuronal vulnerability to A beta. A beta-(25-35) and A beta-(1-40) induced neuronal degeneration in a concentration- and time-dependent manner. Pretreatment of cultures for 24 hr with TNF-beta or TNF-alpha resulted in significant attenuation of A beta-induced neuronal degeneration. Accumulation of peroxides induced in neurons by A beta was significantly attenuated in TNF-pretreated cultures, and TNFs protected neurons against iron toxicity, suggesting that TNFs induce antioxidant pathways. The [Ca2+]i response to glutamate (quantified by fura-2 imaging) was markedly potentiated in neurons exposed to A beta, and this action of A beta was suppressed in cultures pretreated with TNFs. Electrophoretic mobility-shift assays demonstrated an induction of a kappa beta-binding activity in hippocampal cells exposed to TNFs. Exposure of cultures to I kappa B (MAD3) antisense oligonucleotides, a manipulation designed to induce NF-kappa B, mimicked the protection by TNFs. These data suggest that TNFs protect hippocampal neurons against A beta toxicity by suppressing accumulation of ROS and Ca2+ and that kappa B-dependent transcription is sufficient to mediate these effects. A modulatory role for TNF in the neurodegenerative process in AD is proposed.
Resumo:
Numerous mRNA molecules are localized in regions of the dendrites of neurons, some moving along dendrites in response to synaptic activity. The proteins encoded by these RNAs have diverse functions, including participation in memory formation and long-term potentiation. Recent experiments have shown that a cytoplasmic RNA trafficking pathway described for oligodendrocytes also operates in neurons. Transported RNAs possess a cis-acting element that directs them to granules, which are transported along microtubules by the motor proteins kinesin and dynein. These RNA molecules are recruited to the cytoplasmic transport granules by cooperative interaction with a cognate trans-acting factor. mRNAs containing the 11-nucleotide A2RE11 or 21-nucleotide A2RE sequences bind heterogeneous nuclear ribonucleoproteins A2 and A3, which are abundant in the brain. Mutations in this cis-acting element that weaken its interaction with hnRNP A2 also interfere with RNA trafficking. Several dendritically localized mRNAs, including those encoding calcium-calmodulin-dependent protein kinase 11 a subunit and neurogranin, possess A2RE-like sequences, suggesting that they may be localized by interaction with these heterogeneous nuclear ribonucleoproteins. Calcium-calmodulin-dependent protein kinase 11 a subunit is of particular interest: Its RNA is transported in depolarized neurons, and the protein it encodes is essential for establishing long-term memory. Several other cis-acting sequences and trans-acting factors that participate in neuronal RNA localization have been discovered.
Resumo:
Pyramidal neurons in the lateral amygdala discharge trains of action potentials that show marked spike frequency adaptation, which is primarily mediated by activation of a slow calcium-activated potassium current. We show here that these neurons also express an alpha-dendrotoxin- and tityustoxin-Kalpha-sensitive voltage-dependent potassium current that plays a key role in the control of spike discharge frequency. This current is selectively targeted to the primary apical dendrite of these neurons. Activation of mu-opioid receptors by application of morphine or D-Ala(2)-N-Me-Phe(4)-Glycol(5)-enkephalin (DAMGO) potentiates spike frequency adaptation by enhancing the alpha-dendrotoxin-sensitive potassium current. The effects of mu-opioid agonists on spike frequency adaptation were blocked by inhibiting G-proteins with N-ethylmaleimide (NEM) and by blocking phospholipase A(2). Application of arachidonic acid mimicked the actions of DAMGO or morphine. These results show that mu-opioid receptor activation enhances spike frequency adaptation in lateral amygdala neurons by modulating a voltage-dependent potassium channel containing Kv1.2 subunits, through activation of the phospholipase A(2)-arachidonic acid-lipoxygenases cascade.
Resumo:
The calcium-dependent afterhyperpolarization (AHP) that follows trains of action potentials is responsible for controlling action potential firing patterns in many neuronal cell types. We have previously shown that the slow AHP contributes to spike frequency adaptation in pyramidal neurons in the rat lateral amygdala. In addition, a dendritic voltage-gated potassium current mediated by Kv1.2-containing channels also suppresses action potential firing in these neurons. In this paper we show that this voltage-gated potassium current and the slow AHP act together to control spike frequency adaptation in lateral amygdala pyramidal neurons. The two currents have similar effects on action potential number when firing is evoked either by depolarizing current injections or by synaptic stimulation. However, they differ in their control of firing frequency, with the voltage-gated potassium current but not the slow AHP determining the initial frequency of action potential firing. This dual mechanism of controlling firing patterns is unique to lateral amygdala neurons and is likely to contribute to the very low levels of firing seen in lateral amygdala neurons in vivo.
Resumo:
Chronic ethanol exposure and subsequent withdrawal are known to change NMDA receptor activity. This study examined the effects of chronic ethanol administration and withdrawal on the expression of several NMDA receptor subunit and splice variant mRNAs in the rat cerebral cortex. Ethanol dependence was induced by ethanol vapour exposure. To delineate between seizure-induced changes in expression during withdrawal and those due to withdrawal per se, another group of naive rats was treated with pentylenetetrazol (PTZ) injection (30 mg/kg, i.p.). RNA samples from the cortices of chronically treated and withdrawing animals were compared to those from pairfed controls. Changes in NMDA receptor mRNA expression were determined using ribonuclease protection assays targetting the NR2A, -2B, -2C and NR1-pan subunits as well as the three alternatively spliced NR1 inserts (NR1-pan describes all the known NR1 splice variants generated from the 5' insert and the two 3' inserts). The ratio of NR1 mRNA incorporating the 5' insert vs, that lacking it was decreased during ethanol exposure and up to 48 h after withdrawal. NR2B mRNA expression was elevated during exposure, but returned to control levels 18 h after withdrawal. Levels of NR2A, NR2C, NR1-pan and both 3' NR1 insert mRNAs from the ethanol-treated groups did not alter compared with the pair-fed control group. No changes in the level of any NMDA receptor subunit mRNA was detected in the PTZ-treated animals. These data support the hypothesis that changes in NMDA receptor subunit composition may underlie a neuronal adaptation to the chronic ethanol-inhibition and may therefore be important in the precipitation of withdrawal hyperactivity. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The amygdala is intimately involved in emotional behavior, and its role in the generation of anxiety and conditioned fear is well known. Benzodiazepines, which are commonly used for the relief of anxiety, are thought to act by enhancing the action of the inhibitory transmitter GABA. We have examined the properties of GABA-mediated inhibition in the amygdala. Whole-cell recordings were made from neurons in the lateral division of the central amygdala. Application of GABA evoked a current that reversed at the chloride equilibrium potential. Application of the GABA antagonists bicuculline or SR95531 inhibited the GABA-evoked current in a manner consistent with two binding sites. Stimulation of afferents to neurons in the central amygdala evoked an IPSC that was mediated by the release of GABA. The GABA(A) receptor antagonists bicuculline and picrotoxin failed to completely block the IPSC. The bicuculline-resistant IPSC was chloride-selective and was unaffected by GABA(B)-receptor antagonists. Furthermore, this current was insensitive to modulation by general anesthetics or barbiturates. In contrast to their actions at GABA(A) receptors, diazepam and flurazepam inhibited the bicuculline-resistant IPSC in a concentration-dependent manner. These effects were fully antagonized by the benzodiazepine site antagonist Ro15-1788. We conclude that a new type of ionotropic GABA receptor mediates fast inhibitory transmission in the central amygdala. This receptor may be a potential target for the development of new therapeutic strategies for anxiety disorders.