999 resultados para Hartree-Fock, Aproximação de


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze how the spatial localization properties of pairing correlations are changing in a major neutron shell of heavy nuclei. It is shown that the radial distribution of the pairing density depends strongly on whether the chemical potential is close to a low or a high angular momentum level and has little sensitivity to whether the pairing force acts at the surface or in the bulk. The pairing density averaged over one major shell is, however, rather flat, exhibiting little dependence on the pairing force. Hartree-Fock-Bogoliubov calculations for the isotopic chain 100-132Sn are presented for demonstration purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We determine the structure of neutron stars within a Brueckner-Hartree-Fock approach based on realistic nucleon-nucleon, nucleon-hyperon, and hyperon-hyperon interactions. Our results indicate rather low maximum masses below 1.4 solar masses. This feature is insensitive to the nucleonic part of the EOS due to a strong compensation mechanism caused by the appearance of hyperons and represents thus strong evidence for the presence of nonbaryonic "quark" matter in the interior of heavy stars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Realistic nucleon-nucleon interactions induce correlations to the nuclear many-body system, which lead to a fragmentation of the single-particle strength over a wide range of energies and momenta. We address the question of how this fragmentation affects the thermodynamical properties of nuclear matter. In particular, we show that the entropy can be computed with the help of a spectral function, which can be evaluated in terms of the self-energy obtained in the self-consistent Green's function approach. Results for the density and temperature dependences of the entropy per particle for symmetric nuclear matter are presented and compared to the results of lowest order finite-temperature Brueckner-Hartree-Fock calculations. The effects of correlations on the calculated entropy are small, if the appropriate quasiparticle approximation is used. The results demonstrate the thermodynamical consistency of the self-consistent T-matrix approximation for the evaluation of the Green's functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The extension of density functional theory (DFT) to include pairing correlations without formal violation of the particle-number conservation condition is described. This version of the theory can be considered as a foundation of the application of existing DFT plus pairing approaches to atoms, molecules, ultracooled and magnetically trapped atomic Fermi gases, and atomic nuclei where the number of particles is conserved exactly. The connection with Hartree-Fock-Bogoliubov (HFB) theory is discussed, and the method of quasilocal reduction of the nonlocal theory is also described. This quasilocal reduction allows equations of motion to be obtained which are much simpler for numerical solution than the equations corresponding to the nonlocal case. Our theory is applied to the study of some even Sn isotopes, and the results are compared with those obtained in the standard HFB theory and with the experimental ones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The existence of a liquid-gas phase transition for hot nuclear systems at subsaturation densities is a well-established prediction of finite-temperature nuclear many-body theory. In this paper, we discuss for the first time the properties of such a phase transition for homogeneous nuclear matter within the self-consistent Green's function approach. We find a substantial decrease of the critical temperature with respect to the Brueckner-Hartree-Fock approximation. Even within the same approximation, the use of two different realistic nucleon-nucleon interactions gives rise to large differences in the properties of the critical point.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of hole-hole (h-h) propagation in addition to the conventional particle-particle (p-p) propagation, on the energy per particle and the momentum distribution is investigated for the v2 central interaction which is derived from Reid¿s soft-core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (SP) spectrum. Calculation of the energy from a self-consistently determined SP spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function, which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution, based on a Goldstone diagram expansion, is introduced that allows the inclusion of h-h contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing p-p and h-h propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including p-p and h-h terms on the same footing) to the kinetic and potential energy in which the SP energy is given by the quasiparticle energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the p-p and h-h ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a nonrelativistic level that is consistent with the observed depletion of SP orbitals in finite nuclei.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the "twist" mode (rotation of the upper against the lower hemisphere) of a dilute atomic Fermi gas in a spherical trap. The normal and superfluid phases are considered. The linear response to this external perturbation is calculated within the microscopic Hartree-Fock-Bogoliubov approach. In the normal phase the excitation spectrum is concentrated in a rather narrow peak very close to the trapping frequency. In the superfluid phase the strength starts to be damped and fragmented and the collectivity of the mode is progressively lost when the temperature decreases. In the weak-pairing regime some reminiscence of the collective motion still exists, whereas in the strong-pairing regime the twist mode is completely washed out. The disappearance of the twist mode in the strong-pairing regime with decreasing temperature is interpreted in the framework of the two-fluid model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The monopole (L=0) and quadrupole (L=2) strength distributions in normal 3He clusters are calculated within the random-phase approximation. We use a phenomenological, zero-range 3-3He interaction to generate the Hartree-Fock single-particle spectrum and the residual particle-hole interaction. The evolution of the collective modes with the number of atoms in the cluster is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The density of states of a Bose-condensed gas confined in a harmonic trap is investigated. The predictions of Bogoliubov theory are compared with those of Hartree-Fock theory and of the hydrodynamic model. We show that the Hartree-Fock scheme provides an excellent description of the excitation spectrum in a wide range of energy, revealing a major role played by single-particle excitations in these confined systems. The crossover from the hydrodynamic regime, holding at low energies, to the independent-particle regime is explicitly explored by studying the frequency of the surface mode as a function of their angular momentum. The applicability of the semiclassical approximation for the excited states is also discussed. We show that the semiclassical approach provides simple and accurate formulas for the density of states and the quantum depletion of the condensate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkur approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from ~100 eV up to ~5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural and electronic properties of Cu2O have been investigated using the periodic Hartree-Fock method and a posteriori density-functional corrections. The lattice parameter, bulk modulus, and elastic constants have been calculated. The electronic structure of and bonding in Cu2O are analyzed and compared with x-ray photoelectron spectroscopy spectra, showing a good agreement for the valence-band states. To check the quality of the calculated electron density, static structure factors and Compton profiles have been calculated, showing a good agreement with the available experimental data. The effective electron and hole masses have been evaluated for Cu2O at the center of the Brillouin zone. The calculated interaction energy between the two interpenetrated frameworks in the cuprite structure is estimated to be around -6.0 kcal/mol per Cu2O formula. The bonding between the two independent frameworks has been analyzed using a bimolecular model and the results indicate an important role of d10-d10 type interactions between copper atoms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction of atomic hydrogen with C4H9, Si4H9, and Ge4H9 model clusters has been studied using all-electron and pseudopotential ab initio Hartree-Fock computations with basis sets of increasing flexibility. The results show that the effect of polarization functions is important in order to reproduce the experimental findings, but their inclusion only for the atoms directly involved in the chemisorption bond is usually sufficient. For the systems H-C4H9 and H-Si4H9 all-electron and pseudopotential results are in excellent agreement when basis sets of comparable quality are used. Besides, semiempirical modified-neglect-of-differential-overlap computations provide quite reliable results both for diamond and silicon and have been used to investigate larger model clusters. The results confirm the local nature of chemisorption and further justify the use of minimal X4H9 model clusters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interaction models of atomic Al with Si4H9, Si4H7, and Si6H9 clusters have been studied to simulate Al chemisorption on the Si(111) surface in the atop, fourfold atop, and open sites. Calculations were carried out using nonempirical pseudopotentials in the framework of the ab initio Hartree-Fock procedure. Equilibrium bond distances, binding energies for adsorption, and vibrational frequencies of the adatoms are calculated. Several basis sets were used in order to show the importance of polarization effects, especially in the binding energies. Final results show the importance of considering adatom-induced relaxation effects to specify the order of energy stabilities for the three different sites, the fourfold atop site being the preferred one, in agreement with experimental findings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemisorption of group-III metal adatoms on Si(111) and Ge(111) has been studied through the ab initio Hartree-Fock method including nonempirical pseudopotentials and using cluster models to simulate the surface. Three different high-symmetry sites (atop, eclipsed, and open) have been considered by using X4H9, X4H7, and X6H9 (X=Si,Ge) cluster models. In a first step, ideal surface geometries have been used. Metal-induced reconstruction upon chemisorption has also been taken into account. Equilibrium distances, binding energies, and vibrational frequencies have been obtained and compared with available experimental data. From binding-energy considerations, the atop and eclipsed sites seem to be the most favorable ones and thus a coadsorption picture may be suggested. Group-III metals exhibit a similar behavior and the same is true for Si(111) and Ge(111) surfaces when chemisorption is considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The O 1s x-ray photoelectron spectroscopy spectrum for Al(111)/O at 300 K shows two components whose behavior as a function of time and variation of detection angle are consistent with either (a) a surface species represented by the higher binding-energy (BE) component and a subsurface species represented by the lower BE component, or (b) small close-packed oxygen islands with the interior atoms represented by the lower BE component and the perimeter atoms by the higher BE component. We have modeled both situations using ab initio Hartree-Fock wave functions for clusters of Al and O atoms. For an O atom in a threefold site, it was found that a below-surface position gave a higher O 1s BE than an above-surface position, incompatible with interpretation (a). This change in the O 1s BE could arise because the bond for O to Al may have a more covalent character when the O is below the surface than when it is above the surface. We present evidence consistent with this view. An O adatom island with all the O atoms in threefold sites gives calculated O 1s BE's which are significantly higher for the perimeter O atoms. Further, the results for an isolated O island without the Al substrate present also give higher BE¿s for the perimeter atoms. Both these results are consistent with interpretation (b). Published scanning-tunneling-microscopy data supports the suggestion that the chemisorbed state consists of small, close-packed islands, whereas the presence of two vibrational modes in high-resolution electron-energy-loss spectroscopy data has been interpreted as representing surface and subsurface oxygen atoms. In light of the present results, we suggest that a vibrational interpretation in terms of interior and perimeter adatoms should be considered.