849 resultados para HUMAN SYSTEM INTERACTION
Resumo:
Mode of access: Internet.
Resumo:
We present a simulator of a hydropower company’s view of its scheme, and its broader market and network context, which has been developed to evaluate advanced displays for control room operations. Although simplified, the simulator captures all the main aspects of scheme operations. The simulator allows controlled studies to be performed that test the effectiveness of current vs advanced display concepts under normal vs unexpected operating conditions that can be scripted into the simulator.
Resumo:
This thesis initially presents an 'assay' of the literature pertaining to individual differences in human-computer interaction. A series of experiments is then reported, designed to investigate the association between a variety of individual characteristics and various computer task and interface factors. Predictor variables included age, computer expertise, and psychometric tests of spatial visualisation, spatial memory, logical reasoning, associative memory, and verbal ability. These were studied in relation to a variety of computer-based tacks, including: (1) word processing and its component elements; (ii) the location of target words within passages of text; (iii) the navigation of networks and menus; (iv) command generation using menus and command line interfaces; (v) the search and selection of icons and text labels; (vi) information retrieval. A measure of self-report workload was also included in several of these experiments. The main experimental findings included: (i) an interaction between spatial ability and the manipulation of semantic but not spatial interface content; (ii) verbal ability being only predictive of certain task components of word processing; (iii) age differences in word processing and information retrieval speed but not accuracy; (iv) evidence of compensatory strategies being employed by older subjects; (v) evidence of performance strategy differences which disadvantaged high spatial subjects in conditions of low spatial information content; (vi) interactive effects of associative memory, expertise and command strategy; (vii) an association between logical reasoning and word processing but not information retrieval; (viii) an interaction between expertise and cognitive demand; and (ix) a stronger association between cognitive ability and novice performance than expert performance.
Resumo:
Handheld and mobile technologies have witnessed significant advances in functionality, leading to their widespread use as both business and social networking tools. Human-Computer Interaction and Innovation in Handheld, Mobile and Wearable Technologies reviews concepts relating to the design, development, evaluation, and application of mobile technologies. Studies on mobile user interfaces, mobile learning, and mobile commerce contribute to the growing body of knowledge on this expanding discipline.
Resumo:
The physical appearance and behavior of a robot is an important asset in terms of Human-Computer Interaction. Multimodality is also fundamental, as we humans usually expect to interact in a natural way with voice, gestures, etc. People approach complex interaction devices with stances similar to those used in their interaction with other people. In this paper we describe a robot head, currently under development, that aims to be a multimodal (vision, voice, gestures,...) perceptual user interface.
Resumo:
[EN]Enabling natural human-robot interaction using computer vision based applications requires fast and accurate hand detection. However, previous works in this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects difficult to locate. This paper presents an approach which integrates temporal coherence cues and hand detection based on wrists using a cascade classifier. With this approach, we introduce three main contributions: (1) a transparent initialization mechanism without user participation for segmenting hands independently of their gesture, (2) a larger number of detected gestures as well as a faster training phase than previous cascade classifier based methods and (3) near real-time performance for hand pose detection in video streams.
Resumo:
Support Vector Machines (SVMs) are widely used classifiers for detecting physiological patterns in Human-Computer Interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the application of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables, and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported.
Resumo:
Recent developments in interactive technologies have seen major changes in the manner in which artists, performers, and creative individuals interact with digital music technology; this is due to the increasing variety of interactive technologies that are readily available today. Digital Musical Instruments (DMIs) present musicians with performance challenges that are unique to this form of computer music. One of the most significant deviations from conventional acoustic musical instruments is the level of physical feedback conveyed by the instrument to the user. Currently, new interfaces for musical expression are not designed to be as physically communicative as acoustic instruments. Specifically, DMIs are often void of haptic feedback and therefore lack the ability to impart important performance information to the user. Moreover, there currently is no standardised way to measure the effect of this lack of physical feedback. Best practice would expect that there should be a set of methods to effectively, repeatedly, and quantifiably evaluate the functionality, usability, and user experience of DMIs. Earlier theoretical and technological applications of haptics have tried to address device performance issues associated with the lack of feedback in DMI designs and it has been argued that the level of haptic feedback presented to a user can significantly affect the user’s overall emotive feeling towards a musical device. The outcome of the investigations contained within this thesis are intended to inform new haptic interface.
Resumo:
The ISO norm line 9241 states some criteria for ergonomics of human system interaction. In markets with a huge variety of offers and little possibility of differentiation, providers can gain a decisive competitive advantage by user oriented interfaces. A precondition for this is that relevant information can be obtained for entrepreneurial decisions in this regard. To test how users of universal search result pages use those pages and pay attention to different elements, an eye tracking experiment with a mixed design has been developed. Twenty subjects were confronted with search engine result pages (SERPs) and were instructed to make a decision while conditions “national vs. international city” and “with vs. without miniaturized Google map” were used. Different parameters like fixation count, duration and time to first fixation were computed from the eye tracking raw data and supplemented by click rate data as well as data from questionnaires. Results of this pilot study revealed some remarkable facts like a vampire effect on miniaturized Google maps. Furthermore, Google maps did not shorten the process of decision making, Google ads were not fixated, visual attention on SERPs was influenced by position of the elements on the SERP and by the users’ familiarity with the search target. These results support the theory of Amount of Invested Mental Effort (AIME) and give providers empirical evidence to take users’ expectations into account. Furthermore, the results indicated that the task oriented goal mode of participants was a moderator for the attention spent on ads. Most important, SERPs with images attracted the viewers’ attention much longer than those without images. This unique selling proposition may lead to a distortion of competition on markets.
Resumo:
Eye tracking has become a preponderant technique in the evaluation of user interaction and behaviour with study objects in defined contexts. Common eye tracking related data representation techniques offer valuable input regarding user interaction and eye gaze behaviour, namely through fixations and saccades measurement. However, these and other techniques may be insufficient for the representation of acquired data in specific studies, namely because of the complexity of the study object being analysed. This paper intends to contribute with a summary of data representation and information visualization techniques used in data analysis within different contexts (advertising, websites, television news and video games). Additionally, several methodological approaches are presented in this paper, which resulted from several studies developed and under development at CETAC.MEDIA - Communication Sciences and Technologies Research Centre. In the studies described, traditional data representation techniques were insufficient. As a result, new approaches were necessary and therefore, new forms of representing data, based on common techniques were developed with the objective of improving communication and information strategies. In each of these studies, a brief summary of the contribution to their respective area will be presented, as well as the data representation techniques used and some of the acquired results.
Resumo:
This paper introduces a novel vision for further enhanced Internet of Things services. Based on a variety of data – such as location data, ontology-backed search queries, in- and outdoor conditions – the Prometheus framework is intended to support users with helpful recommendations and information preceding a search for context-aware data. Adapted from artificial intelligence concepts, Prometheus proposes user-readjusted answers on umpteen conditions. A number of potential Prometheus framework applications are illustrated. Added value and possible future studies are discussed in the conclusion.
Resumo:
The term human factor is used by professionals of various fields meant for understanding the behavior of human beings at work. The human being, while developing a cooperative activity with a computer system, is subject to cause an undesirable situation in his/her task. This paper starts from the principle that human errors may be considered as a cause or factor contributing to a series of accidents and incidents in many diversified fields in which human beings interact with automated systems. We propose a simulator of performance in error with potentiality to assist the Human Computer Interaction (HCI) project manager in the construction of the critical systems. © 2011 Springer-Verlag.
Resumo:
The design and development of spoken interaction systems has been a thoroughly studied research scope for the last decades. The aim is to obtain systems with the ability to interact with human agents with a high degree of naturalness and efficiency, allowing them to carry out the actions they desire using speech, as it is the most natural means of communication between humans. To achieve that degree of naturalness, it is not enough to endow systems with the ability to accurately understand the user’s utterances and to properly react to them, even considering the information provided by the user in his or her previous interactions. The system has also to be aware of the evolution of the conditions under which the interaction takes place, in order to act the most coherent way as possible at each moment. Consequently, one of the most important features of the system is that it has to be context-aware. This context awareness of the system can be reflected in the modification of the behaviour of the system taking into account the current situation of the interaction. For instance, the system should decide which action it has to carry out, or the way to perform it, depending on the user that requests it, on the way that the user addresses the system, on the characteristics of the environment in which the interaction takes place, and so on. In other words, the system has to adapt its behaviour to these evolving elements of the interaction. Moreover that adaptation has to be carried out, if possible, in such a way that the user: i) does not perceive that the system has to make any additional effort, or to devote interaction time to perform tasks other than carrying out the requested actions, and ii) does not have to provide the system with any additional information to carry out the adaptation, which could imply a lesser efficiency of the interaction, since users should devote several interactions only to allow the system to become adapted. In the state-of-the-art spoken dialogue systems, researchers have proposed several disparate strategies to adapt the elements of the system to different conditions of the interaction (such as the acoustic characteristics of a specific user’s speech, the actions previously requested, and so on). Nevertheless, to our knowledge there is not any consensus on the procedures to carry out these adaptation. The approaches are to an extent unrelated from one another, in the sense that each one considers different pieces of information, and the treatment of that information is different taking into account the adaptation carried out. In this regard, the main contributions of this Thesis are the following ones: Definition of a contextualization framework. We propose a unified approach that can cover any strategy to adapt the behaviour of a dialogue system to the conditions of the interaction (i.e. the context). In our theoretical definition of the contextualization framework we consider the system’s context as all the sources of variability present at any time of the interaction, either those ones related to the environment in which the interaction takes place, or to the human agent that addresses the system at each moment. Our proposal relies on three aspects that any contextualization approach should fulfill: plasticity (i.e. the system has to be able to modify its behaviour in the most proactive way taking into account the conditions under which the interaction takes place), adaptivity (i.e. the system has also to be able to consider the most appropriate sources of information at each moment, both environmental and user- and dialogue-dependent, to effectively adapt to the conditions aforementioned), and transparency (i.e. the system has to carry out the contextualizaton-related tasks in such a way that the user neither perceives them nor has to do any effort in providing the system with any information that it needs to perform that contextualization). Additionally, we could include a generality aspect to our proposed framework: the main features of the framework should be easy to adopt in any dialogue system, regardless of the solution proposed to manage the dialogue. Once we define the theoretical basis of our contextualization framework, we propose two cases of study on its application in a spoken dialogue system. We focus on two aspects of the interaction: the contextualization of the speech recognition models, and the incorporation of user-specific information into the dialogue flow. One of the modules of a dialogue system that is more prone to be contextualized is the speech recognition system. This module makes use of several models to emit a recognition hypothesis from the user’s speech signal. Generally speaking, a recognition system considers two types of models: an acoustic one (that models each of the phonemes that the recognition system has to consider) and a linguistic one (that models the sequences of words that make sense for the system). In this work we contextualize the language model of the recognition system in such a way that it takes into account the information provided by the user in both his or her current utterance and in the previous ones. These utterances convey information useful to help the system in the recognition of the next utterance. The contextualization approach that we propose consists of a dynamic adaptation of the language model that is used by the recognition system. We carry out this adaptation by means of a linear interpolation between several models. Instead of training the best interpolation weights, we make them dependent on the conditions of the dialogue. In our approach, the system itself will obtain these weights as a function of the reliability of the different elements of information available, such as the semantic concepts extracted from the user’s utterance, the actions that he or she wants to carry out, the information provided in the previous interactions, and so on. One of the aspects more frequently addressed in Human-Computer Interaction research is the inclusion of user specific characteristics into the information structures managed by the system. The idea is to take into account the features that make each user different from the others in order to offer to each particular user different services (or the same service, but in a different way). We could consider this approach as a user-dependent contextualization of the system. In our work we propose the definition of a user model that contains all the information of each user that could be potentially useful to the system at a given moment of the interaction. In particular we will analyze the actions that each user carries out throughout his or her interaction. The objective is to determine which of these actions become the preferences of that user. We represent the specific information of each user as a feature vector. Each of the characteristics that the system will take into account has a confidence score associated. With these elements, we propose a probabilistic definition of a user preference, as the action whose likelihood of being addressed by the user is greater than the one for the rest of actions. To include the user dependent information into the dialogue flow, we modify the information structures on which the dialogue manager relies to retrieve information that could be needed to solve the actions addressed by the user. Usage preferences become another source of contextual information that will be considered by the system towards a more efficient interaction (since the new information source will help to decrease the need of the system to ask users for additional information, thus reducing the number of turns needed to carry out a specific action). To test the benefits of the contextualization framework that we propose, we carry out an evaluation of the two strategies aforementioned. We gather several performance metrics, both objective and subjective, that allow us to compare the improvements of a contextualized system against the baseline one. We will also gather the user’s opinions as regards their perceptions on the behaviour of the system, and its degree of adaptation to the specific features of each interaction. Resumen El diseño y el desarrollo de sistemas de interacción hablada ha sido objeto de profundo estudio durante las pasadas décadas. El propósito es la consecución de sistemas con la capacidad de interactuar con agentes humanos con un alto grado de eficiencia y naturalidad. De esta manera, los usuarios pueden desempeñar las tareas que deseen empleando la voz, que es el medio de comunicación más natural para los humanos. A fin de alcanzar el grado de naturalidad deseado, no basta con dotar a los sistemas de la abilidad de comprender las intervenciones de los usuarios y reaccionar a ellas de manera apropiada (teniendo en consideración, incluso, la información proporcionada en previas interacciones). Adicionalmente, el sistema ha de ser consciente de las condiciones bajo las cuales transcurre la interacción, así como de la evolución de las mismas, de tal manera que pueda actuar de la manera más coherente en cada instante de la interacción. En consecuencia, una de las características primordiales del sistema es que debe ser sensible al contexto. Esta capacidad del sistema de conocer y emplear el contexto de la interacción puede verse reflejada en la modificación de su comportamiento debida a las características actuales de la interacción. Por ejemplo, el sistema debería decidir cuál es la acción más apropiada, o la mejor manera de llevarla a término, dependiendo del usuario que la solicita, del modo en el que lo hace, etcétera. En otras palabras, el sistema ha de adaptar su comportamiento a tales elementos mutables (o dinámicos) de la interacción. Dos características adicionales son requeridas a dicha adaptación: i) el usuario no ha de percibir que el sistema dedica recursos (temporales o computacionales) a realizar tareas distintas a las que aquél le solicita, y ii) el usuario no ha de dedicar esfuerzo alguno a proporcionar al sistema información adicional para llevar a cabo la interacción. Esto último implicaría una menor eficiencia de la interacción, puesto que los usuarios deberían dedicar parte de la misma a proporcionar información al sistema para su adaptación, sin ningún beneficio inmediato. En los sistemas de diálogo hablado propuestos en la literatura, se han propuesto diferentes estrategias para llevar a cabo la adaptación de los elementos del sistema a las diferentes condiciones de la interacción (tales como las características acústicas del habla de un usuario particular, o a las acciones a las que se ha referido con anterioridad). Sin embargo, no existe una estrategia fija para proceder a dicha adaptación, sino que las mismas no suelen guardar una relación entre sí. En este sentido, cada una de ellas tiene en cuenta distintas fuentes de información, la cual es tratada de manera diferente en función de las características de la adaptación buscada. Teniendo en cuenta lo anterior, las contribuciones principales de esta Tesis son las siguientes: Definición de un marco de contextualización. Proponemos un criterio unificador que pueda cubrir cualquier estrategia de adaptación del comportamiento de un sistema de diálogo a las condiciones de la interacción (esto es, el contexto de la misma). En nuestra definición teórica del marco de contextualización consideramos el contexto del sistema como todas aquellas fuentes de variabilidad presentes en cualquier instante de la interacción, ya estén relacionadas con el entorno en el que tiene lugar la interacción, ya dependan del agente humano que se dirige al sistema en cada momento. Nuestra propuesta se basa en tres aspectos que cualquier estrategia de contextualización debería cumplir: plasticidad (es decir, el sistema ha de ser capaz de modificar su comportamiento de la manera más proactiva posible, teniendo en cuenta las condiciones en las que tiene lugar la interacción), adaptabilidad (esto es, el sistema ha de ser capaz de considerar la información oportuna en cada instante, ya dependa del entorno o del usuario, de tal manera que adecúe su comportamiento de manera eficaz a las condiciones mencionadas), y transparencia (que implica que el sistema ha de desarrollar las tareas relacionadas con la contextualización de tal manera que el usuario no perciba la manera en que dichas tareas se llevan a cabo, ni tampoco deba proporcionar al sistema con información adicional alguna). De manera adicional, incluiremos en el marco propuesto el aspecto de la generalidad: las características del marco de contextualización han de ser portables a cualquier sistema de diálogo, con independencia de la solución propuesta en los mismos para gestionar el diálogo. Una vez hemos definido las características de alto nivel de nuestro marco de contextualización, proponemos dos estrategias de aplicación del mismo a un sistema de diálogo hablado. Nos centraremos en dos aspectos de la interacción a adaptar: los modelos empleados en el reconocimiento de habla, y la incorporación de información específica de cada usuario en el flujo de diálogo. Uno de los módulos de un sistema de diálogo más susceptible de ser contextualizado es el sistema de reconocimiento de habla. Este módulo hace uso de varios modelos para generar una hipótesis de reconocimiento a partir de la señal de habla. En general, un sistema de reconocimiento emplea dos tipos de modelos: uno acústico (que modela cada uno de los fonemas considerados por el reconocedor) y uno lingüístico (que modela las secuencias de palabras que tienen sentido desde el punto de vista de la interacción). En este trabajo contextualizamos el modelo lingüístico del reconocedor de habla, de tal manera que tenga en cuenta la información proporcionada por el usuario, tanto en su intervención actual como en las previas. Estas intervenciones contienen información (semántica y/o discursiva) que puede contribuir a un mejor reconocimiento de las subsiguientes intervenciones del usuario. La estrategia de contextualización propuesta consiste en una adaptación dinámica del modelo de lenguaje empleado en el reconocedor de habla. Dicha adaptación se lleva a cabo mediante una interpolación lineal entre diferentes modelos. En lugar de entrenar los mejores pesos de interpolación, proponemos hacer los mismos dependientes de las condiciones actuales de cada diálogo. El propio sistema obtendrá estos pesos como función de la disponibilidad y relevancia de las diferentes fuentes de información disponibles, tales como los conceptos semánticos extraídos a partir de la intervención del usuario, o las acciones que el mismo desea ejecutar. Uno de los aspectos más comúnmente analizados en la investigación de la Interacción Persona-Máquina es la inclusión de las características específicas de cada usuario en las estructuras de información empleadas por el sistema. El objetivo es tener en cuenta los aspectos que diferencian a cada usuario, de tal manera que el sistema pueda ofrecer a cada uno de ellos el servicio más apropiado (o un mismo servicio, pero de la manera más adecuada a cada usuario). Podemos considerar esta estrategia como una contextualización dependiente del usuario. En este trabajo proponemos la definición de un modelo de usuario que contenga toda la información relativa a cada usuario, que pueda ser potencialmente utilizada por el sistema en un momento determinado de la interacción. En particular, analizaremos aquellas acciones que cada usuario decide ejecutar a lo largo de sus diálogos con el sistema. Nuestro objetivo es determinar cuáles de dichas acciones se convierten en las preferencias de cada usuario. La información de cada usuario quedará representada mediante un vector de características, cada una de las cuales tendrá asociado un valor de confianza. Con ambos elementos proponemos una definición probabilística de una preferencia de uso, como aquella acción cuya verosimilitud es mayor que la del resto de acciones solicitadas por el usuario. A fin de incluir la información dependiente de usuario en el flujo de diálogo, llevamos a cabo una modificación de las estructuras de información en las que se apoya el gestor de diálogo para recuperar información necesaria para resolver ciertos diálogos. En dicha modificación las preferencias de cada usuario pasarán a ser una fuente adicional de información contextual, que será tenida en cuenta por el sistema en aras de una interacción más eficiente (puesto que la nueva fuente de información contribuirá a reducir la necesidad del sistema de solicitar al usuario información adicional, dando lugar en consecuencia a una reducción del número de intervenciones necesarias para llevar a cabo una acción determinada). Para determinar los beneficios de las aplicaciones del marco de contextualización propuesto, llevamos a cabo una evaluación de un sistema de diálogo que incluye las estrategias mencionadas. Hemos recogido diversas métricas, tanto objetivas como subjetivas, que nos permiten determinar las mejoras aportadas por un sistema contextualizado en comparación con el sistema sin contextualizar. De igual manera, hemos recogido las opiniones de los participantes en la evaluación acerca de su percepción del comportamiento del sistema, y de su capacidad de adaptación a las condiciones concretas de cada interacción.
Resumo:
The widespread development of Decision Support System (DSS) in construction indicate that the evaluation of software become more important than before. However, it is identified that most research in construction discipline did not attempt to assess its usability. Therefore, little is known about the approach on how to properly evaluate a DSS for specific problem. In this paper, we present a practical framework that can be guidance for DSS evaluation. It focuses on how to evaluate software that is dedicatedly designed for consultant selection problem. The framework features two main components i.e. Sub-system Validation and Face Validation. Two case studies of consultant selection at Malaysian Department of Irrigation and Drainage were integrated in this framework. Some inter-disciplinary area such as Software Engineering, Human Computer Interaction (HCI) and Construction Project Management underpinned the discussion of the paper. It is anticipated that this work can foster better DSS development and quality decision making that accurately meet the client’s expectation and needs
Resumo:
Physical design objects such as sketches, drawings, collages, storyboards and models play an important role in supporting communication and coordination in design studios. CAM (Cooperative Artefact Memory) is a mobile-tagging based messaging system that allows designers to collaboratively store relevant information onto their design objects in the form of messages, annotations and external web links. We studied the use of CAM in a Product Design studio over three weeks, involving three different design teams. In this paper, we briefly describe CAM and show how it serves as 'object memory'.