941 resultados para HISTONE CHAPERONE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were to investigate mechanisms of action involved in H2AX phosphorylation by DNA interstrand crosslinking (ICL) agents and determine whether gamma H2AX could be a suitable pharmacological marker for identifying potential ICL cellular chemosensitivity. In normal human fibroblasts, after treatment with nitrogen mustard (HN2) or cisplatin, the peak gamma H2AX response was detected 2-3 h after the peak of DNA ICLs measured using the comet assay, a validated method for detecting ICLs in vitro or in clinical samples. Detection of gamma H2AX foci by immunofluorescence microscopy could be routinely detected with 6-10 times lower concentrations of both drugs compared to detection of ICLs using the comet assay. A major pathway for repairing DNA ICLs is the initial unhooking of the ICL by the ERCC1-XPF endonuclease followed by homologous recombination. HN2 or cisplatin-induced gamma H2AX foci persisted significantly longer in both, ERCC1 or XRCC3 (homologous recombination) defective Chinese hamster cells that are highly sensitive to cell killing by ICL agents compared to wild type or ionising radiation sensitive XRCC5 cells. An advantage of using gamma H2AX immunofluorescence over the comet assay is that it appears to detect ICL chemosensitivity in both ERCC1 and HR defective cells. With HN2 and cisplatin, gamma H2AX foci also persisted in chemosensitive human ovarian cancer cells (A2780) compared to chemoresistant (A2780cisR) cells. These results show that gamma H2AX can act as a highly sensitive and general marker of DNA damage induced by HN2 or cisplatin and shows promise for predicting potential cellular chemosensitivity to ICL agents. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaperones are ubiquitous conserved proteins critical in stabilization of new proteins, repair/removal of defective proteins and immunodominant antigens in innate and adaptive immunity. Periodontal disease is a chronic inflammatory infection associated with infection by Porphyromonas gingivalis that culminates in the destruction of the supporting structures of the teeth. We previously reported studies of serum antibodies reactive with the human chaperone Hsp90 in gingivitis, a reversible form of gingival disease confined to the oral soft tissues. In those studies, antibodies were at their highest levels in subjects with the best oral health. We hypothesized that antibodies to the HSP90 homologue of P. gingivalis (HtpG) might be associated with protection/resistance against destructive periodontitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Male infertility is a common cause of reproductive failure in humans. In mice, targeted deletions of the genes coding for FKBP6 or FKBP52, members of the FK506 binding protein family, can result in male infertility. In the case of FKBP52, this reflects an important role in potentiating Androgen Receptor (AR) signalling in the prostate and accessory glands, but not the testis. In infertile men, no mutations of FKBP52 or FKBP6 have been found so far, but the gene for FKBP-like (FKBPL) maps to chromosome 6p21.3, an area linked to azoospermia in a group of Japanese patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marijuana smokers and animals treated with ?9-tetrahydrocannabinol, THC, the principal component of marijuana, show alterations of sperm morphology suggesting a role for cannabinoids in sperm differentiation and/or maturation. Since the cannabinoid receptor 1 (CNR1) activation appears to play a pivotal role in spermiogenesis, the developmental stage where DNA is remodeled, we hypothesized that CNR1 receptors might also influence chromatin quality in sperm. We used Cnr1 null mutant (Cnr1-/-) mice to study the possible role of endocannabinoids on sperm chromatin during spermiogenesis. We demonstrated that CNR1 activation regulated chromatin remodeling of spermatids by either increasing Tnp2 levels or enhancing histone displacement. Comparative analysis of WT, Cnr1+/- and Cnr1-/- animals suggested the possible occurrence of haploinsufficiency for Tnp2 turnover control by CNR1, while histone displacement was disrupted to a lesser extent. Further, flow cytometry analysis demonstrated that the genetic loss of Cnr1 decreased sperm chromatin quality and was associated with sperm DNA fragmentation. This damage increased during epididymal transit, from caput to cauda. Collectively, our results show that the expression/activity of CNR1 controls the physiological alterations of DNA structure during spermiogenic maturation and epididymal transit. Given the deleterious effects of sperm DNA damage on male fertility, we suggest that the reproductive function of marijuana users may also be impaired by deregulation of the endogenous endocannabinoid system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone deacetylases ( HDACs) 1 and 2 share a high degree of homology and coexist within the same protein complexes. Despite their close association, each possesses unique functions. We show that the upregulation of HDAC2 in colorectal cancer occurred early at the polyp stage, was more robust and occurred more frequently than HDAC1. Similarly, while the expression of HDACs1 and 2 were increased in cervical dysplasia and invasive carcinoma, HDAC2 expression showed a clear demarcation of high-intensity staining at the transition region of dysplasia compared to HDAC1. Upon HDAC2 knockdown, cells displayed an increased number of cellular extensions reminiscent of cell differentiation. There was also an increase in apoptosis, associated with increased p21(Cip1/WAF1) expression that was independent of p53. These results suggest that HDACs, especially HDAC2, are important enzymes involved in the early events of carcinogenesis, making them candidate markers for tumor progression and targets for cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biochemical studies reveal that a conserved arginine residue (R37) at the centre of the 14 angstrom internal cavity of histone deacetylase (HDAC) 8 is important for catalysis and acetate affinity. Computational studies indicate that R37 forms multiple hydrogen bonding interactions with the backbone carbonyl oxygen atoms of two conserved glycine residues, G303 and G305, resulting in a 'closed' form of the channel. One possible rationale for these data is that water or product (acetate) transit through the catalytically crucial internal channel of HDAC8 is regulated by a gating interaction between G139 and G303 tethered in position by the conserved R37. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:


Rationale Upregulation of glucocorticoid receptor ß (GRß) has been implicated in steroid resistance in severe asthma, although previous studies are conflicting. GRß has been proposed as a dominant negative isoform of glucocorticoid receptor a (GRa) but it has also been suggested that GRß can cause steroid resistance via reduced expression of histone deacetylase 2 (HDAC2), a key regulator of steroid responsiveness in the airway.


Objectives To examine GRß, GRa, HDAC1 and HDAC2 expression at transcript and protein levels in bronchial biopsies from a large series of patients with severe asthma, and to compare the findings with those of patients with mild to moderate asthma and healthy volunteers.


Methods Bronchoscopic study in two UK centres with real-time PCR and immunohistochemistry performed on biopsies, western blotting of bronchial epithelial cells and immunoprecipitation with anti-GRß antibody.


Measurements and main results Protein and mRNA expression for GRa and HDAC2 did not differ between groups. GRß mRNA was detected in only 13 of 73 samples (seven patients with severe asthma), however immunohistochemistry showed widespread epithelial staining in all groups. Western blotting of bronchial epithelial cells with GRß antibody detected an additional ‘cross-reacting’ protein, identified as clathrin. HDAC1 expression was increased in patients with severe asthma compared with healthy volunteers.


Conclusions GRß mRNA is expressed at low levels in a minority of patients with severe asthma. HDAC1 and HDAC2 expression was not downregulated in severe asthma. These data do not support upregulated GRß and resultant reduced HDAC expression as the principal mechanism of steroid resistance in severe asthma. Conflicting GRß literature may be explained in part by clathrin cross-reactivity with commercial antibodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale: Histone deacetylase (HDAC)7 is expressed in the early stages of embryonic development and may play a role in endothelial function.

Objective: This study aimed to investigate the role of HDAC7 in endothelial cell (EC) proliferation and growth and the underlying mechanism.

Methods and Results: Overexpression of HDAC7 by adenoviral gene transfer suppressed human umbilical vein endothelial cell (HUVEC) proliferation by preventing nuclear translocation of ß-catenin and downregulation of T-cell factor-1/Id2 (inhibitor of DNA binding 2) and cyclin D1, leading to G1 phase elongation. Further assays with the TOPFLASH reporter and quantitative RT-PCR for other ß-catenin target genes such as Axin2 confirmed that overexpression of HDAC7 decreased ß-catenin activity. Knockdown of HDAC7 by lentiviral short hairpin RNA transfer induced ß-catenin nuclear translocation but downregulated cyclin D1, cyclin E1 and E2F2, causing HUVEC hypertrophy. Immunoprecipitation assay and mass spectrometry analysis revealed that HDAC7 directly binds to ß-catenin and forms a complex with 14-3-3 e, ?, and ? proteins. Vascular endothelial growth factor treatment induced HDAC7 degradation via PLC?-IP3K (phospholipase C?–inositol-1,4,5-trisphosphate kinase) signal pathway and partially rescued HDAC7-mediated suppression of proliferation. Moreover, vascular endothelial growth factor stimulation suppressed the binding of HDAC7 with ß-catenin, disrupting the complex and releasing ß-catenin to translocate into the nucleus.

Conclusions: These findings demonstrate that HDAC7 interacts with ß-catenin keeping ECs in a low proliferation stage and provides a novel insight into the mechanism of HDAC7-mediated signal pathways leading to endothelial growth

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galectin-9 expression in endothelial cells can be induced in response to inflammation. However, the mechanism of its expression remains unclear. In this study, we found that interferon-? (IFN-?) induced galectin-9 expression in human endothelial cells in a time-dependent manner, which coincided with the activation of histone deacetylase (HDAC). When endothelial cells were treated with the HDAC3 inhibitor, apicidin, or shRNA-HDAC3 knockdown, IFN-?-induced galectin-9 expression was abolished. Overexpression of HDAC3 induced the interaction between phosphoinositol 3-kinase (PI3K) and IFN response factor 3 (IRF3), leading to IRF3 phosphorylation, nuclear translocation, and galectin-9 expression. HDAC3 functioned as a scaffold protein for PI3K/IRF3 interaction. In addition to galectin-9 expression, IFN-? also induced galectin-9 location onto plasma membrane, which was HDAC3-independent. Importantly, HDAC3 was essential for the constitutive transcription of PI3K and IRF3, which might be responsible for the basal level of galectin-9 expression. The phosphorylation of IRF3 was essential for galectin-9 expression. This study provides new evidence that HDAC3 regulates galectin-9 expression in endothelial cells via interaction with PI3K-IRF3 signal pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular smooth muscle cell (SMC) proliferation has an indispensable role in the pathogenesis of vascular disease, but the mechanism is not fully elucidated. The epigenetic enzyme histone deacetylase 7 (HDAC7) is involved in endothelial homeostasis and SMC differentiation and could have a role in SMC proliferation. In this study, we sought to examine the effect of 2 HDAC7 isoforms on SMC proliferation and neointima formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone deacetylases (HDACs) are a family of enzymes that remove acetyl groups from lysine residues of histone proteins, a modification that results in epigenetic modulation of gene expression. Although originally shown to be involved in cancer and neurological disease, HDACs are also found to play crucial roles in arteriosclerosis. This review summarizes the effects of HDACs and HDAC inhibitors on proliferation, migration, and apoptosis of endothelial and smooth muscle cells. In addition, an updated discussion of HDACs' recently discovered effects on stem cell differentiation and atherosclerosis is provided. Overall, HDACs appear to be promising therapeutic targets for the treatment of arteriosclerosis and other cardiovascular diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone deacetylase 3 (HDAC3) is known to play a crucial role in the differentiation of endothelial progenitors. The role of HDAC3 in mature endothelial cells, however, is not well understood. Here, we investigated the function of HDAC3 in preserving endothelial integrity in areas of disturbed blood flow, ie, bifurcation areas prone to atherosclerosis development.